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ABSTRACT: A new diagnostic method for measuring the electron density N
e
 using the asymmetry of hydrogenic

spectral lines in dense plasmas was previously proposed and implemented in several experiments. The method has the
following advantages compared to the method of deducing N

e
 from the experimental widths of spectral lines. First, the

latter, traditional method requires measuring widths of at least two spectral lines (because the widths are affected not
only by the Stark broadening, but also by competing broadening mechanisms, such as, e.g., the Doppler broadening.),
while for the new diagnostic method it is sufficient to obtain the experimental profile of just one spectral line. Second,
the traditional method based on the experimental widths would be difficult to implement if the center of the spectral
lines is optically thick. In distinction, the new diagnostic method can still be used even if the spectral line is optically
thick in its central part. In the theory underlying this new diagnostic method, the contribution of plasma ions to the
spectral line asymmetry was calculated only for configurations where the perturbing ions are outside the bound electron
cloud of the radiating atom/ion (non-penetrating configurations). In the present paper we take into the contribution to
the spectral line asymmetry from penetrating configurations where the perturbing ion is inside the bound electron cloud
of the radiating atom/ion. We show that in high density plasmas, the allowance for penetrating ions can result in significant
corrections to the electron density deduced from the spectral line asymmetry.

Key words: spectroscopic diagnostics of plasmas, electron density measurements, asymmetry of spectral lines, penetrating
configurations

1. INTRODUCTION

The asymmetry of hydrogenic spectral lines in dense plasmas is primarily caused by the nonuniformity of the ion
microfield, as noted by Sholin and his co-workers in papers [1-3] (for the latest advances in the theory of the
asymmetry we refer to papers [4, 5] and references therein). Typically the blue maximum of the spectral line is
higher than the red maximum, and the positions of the intensity maxima are asymmetrical with respect to the
unperturbed line center.

A new diagnostic method for measuring the electron density using the asymmetry of hydrogenic spectral lines
in dense plasmas was proposed and implemented in paper [6]. In that paper, in particular, from the experimental
asymmetry of the C VI Lyman-delta line emitted by a vacuum spark discharge, the electron density was deduced to
be N

e
 = 3x1020 cm–3. This value of N

e
 was in a good agreement with the electron density determined from the

experimental widths of C VI Lyman-beta and Lyman-delta lines.

Later this diagnostic method was employed also in the experiment presented in paper [7]. In that laser-induced
breakdown spectroscopy experiment, the electron density N

e
 ~ 3x1017 cm–3 was determined from the experimental

asymmetry of the H I Balmer-beta (H-beta) line.

This new diagnostic method has the following advantages compared to the method of deducing N
e
 from the

experimental widths of spectral lines. First, the latter, traditional method requires measuring widths of at least two
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spectral lines – because the widths are affected not only by the Stark broadening, but also by competing broadening
mechanisms, such as, e.g., the Doppler broadening. In distinction, for using the new diagnostic method it is sufficient
to obtain the experimental profile of just one spectral line – because the Doppler broadening does not cause the
asymmetry.

Second, the traditional method based on the experimental widths would be difficult to implement if the center
of the spectral lines is optically thick. In distinction, the new diagnostic method can still be used even if the spectral
line is optically thick in its central part. This is because the overwhelming contribution to the asymmetry originates
from the wings of the spectral line, the wings being usually optically thin. More details can be found in Sect. 1.6 of
book [8] */.

In the theory underlying this new diagnostic method, the contribution of plasma ions to the spectral line asymmetry
was calculated only for configurations where the perturbing ions are outside the “atomic sphere”, i.e., outside the
bound electron cloud of the radiating atom/ion (non-penetrating configurations). In the present paper we take into
the contribution to the spectral line asymmetry from penetrating configurations, i.e., from the configurations where
the perturbing ion is inside the bound electron cloud of the radiating atom/ion (hereafter, radiator). We show that in
high density plasmas, the allowance for penetrating ions can result in significant corrections to the electron density
deduced from the spectral line asymmetry.

2. ALLOWANCE FOR PENETRATING IONS

Let us first present a brief overview of the underlying theory for non-penetrating configurations. The dipole interaction
of the radiator with perturbing ions outside the bound electron cloud splits the spectral line into Stark components
symmetrically with respect to the unperturbed frequency or wavelength – in terms of both positions and intensities
of the Stark components. The quadrupole interactions of the radiator with perturbing ions outside the bound electron
cloud causes the asymmetry of the Stark splitting – in terms of both positions and intensities of the Stark components.

 However, in paper [9] it was shown that the quadrupole interaction, despite casing the asymmetric splitting of
the spectral line into Stark components, does not shift the center of gravity of the line profile. Therefore, in the new
diagnostic method presented in paper [6], first the center of gravity of the experimental profile was determined and
then it was taken as the reference point. Then with respect to this point, the integrated intensities of the blue (I

B
) and

red (I
R
) wings of the experimental profile were found. After that, the experimental degree of asymmetry, defined as

,
0.5[ ]

B R
quad

B R

I I

I I (1)

was determined and then compared with the corresponding theoretical value given below.

The theoretical intensities of the blue and red wings, resulting from dipole and quadrupole interactions of the
radiator with perturbing ions outside the bound electron cloud, can be expressed as follows (see paper [6]):
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*/ We note that Ref. [40] from Ch. 1 of [8] on the paper referred here as [6] has typographic errors. The correct one is our Ref. [6] here.
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where Z
p
 is the charge of perturbing ions, Z

r
 is the nuclear charge of the radiator, a

o
 is the Bohr radius, and

R
o
 = [(4�/3)N

p
]–1/3 is the mean interionic distance, N

p
 = N

e 
/ Z

p
 being the perturbing ion density. Here (0)

kI and  (1)
k�  are

the unperturbed intensity and the quadrupole correction to the intensity, respectively, the subscript k being the label
of Stark components of the spectral line: k > 0 and k < 0 correspond to the blue-shifted and red-shifted components,

respectively (the values of (0)
kI and (1)

k� for several Lyman and Balmer lines were tabulated in paper [2]). The quantity

<R0/R> is the scaled inverse distance between the perturbing ion and the radiator averaged over the distribution of
such distances.

Finally, the theoretical degree of asymmetry was presented in paper [6] in the form:

21
3 33

(0) (1)
21 2

0

[ ]
0.46204 ,

10
pe

quad k k
kr

ZN cm
I

Z
� (4)

Then the electron density N
e
 was determined in paper [6] by substituting the experimental degree of asymmetry

into the left side of Eq. (4).

In the present paper we seek to add the contribution of penetrating ions to the spectral line asymmetry – in order
to refine this diagnostic method. To get the message across in a simple form, we limit ourselves below to the
practically important case Z

p
 = Z

r
 = Z. The energy shifts due to penetrating ions can be calculated by the perturbation

theory in the basis of the spherical wave functions of the so-called “united atom” of the nuclear charge 2Z.

The perturbed energy shifts (counted from the unperturbed energies) for the orbital quantum number l > 0 are
given by (see, e.g., Eqs. (6) and (7) from paper [10] or Eqs. (5.11), (5.12) from book [11]):
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For the case of l = 0, the calculated energy shift is:
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We note that Eq. (6) can be also obtained from Eq. (5), first by setting m = 0, and then by cancelling out l(l + 1)
in the numerator and denominator, and by setting l = 0. (This was mentioned in book [11], but in Eq. (5.11) from
[11] corresponding to our Eq. (6), there was a typographic error in the sign.)

The frequency change of an individual Stark component is thus given by
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For the specific case where either l = 0 or l� = 0, Eq. (8) reduces to
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Then the quasistatic profile of each Stark component can be represented in the form:

max
2 2 1 2
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Here, u � R2, and the probability of finding the perturbing ion a distance u away from the radiating atom is taken
to be the binary distribution. For simplifying the integration, we use the expansion of the distribution in powers
u/R0

2 and keep the terms up to ~u2:

3 2

3 3 3 6

3 3 3
( ) exp .

2 2 2o o o o

u u u u
W u du du

R R R R (11)

For the case of a hydrogenic radiator under the presence of a penetrating ion, the relative intensities of each line
component can be best calculated analytically using a robust perturbation theory developed by Oks and Uzer [12].
A more detailed explanation of this procedure is outlined in Appendix A. The relative intensities of each component
can be written as

0 2 1 2 ,k Ik IkI Z u (12)

where 0
Ik

 and 1
Ik

 are tabulated in Appendix B for each component of the spectral line Balmer-alpha, considered

here as an example.

The upper limit u
max

 of the integration in Eq. (10) should be the smallest of the following two “candidates”. One
candidate for u

max
 is the root mean square size of the bound electron cloud, which depends on the sublevel in

consideration:

2
2

2 [5 1 3 ( 1)].
2rms

n
r n l l

Z
(13)

The other candidate for u
max

 is defined by the limit of the applicability of the perturbation theory. Of course, this
would ensure that formally calculated corrections to the energy and intensities of the spectral line would remain
relatively small.

 The allowance for penetrating ions shifts the center of gravity of the spectral line, as shown in paper [13]. This
is the only contribution to the shift of the center of gravity since the dipole and quadrupole interactions of the
radiator with perturbing ions outside the bound electron cloud do not shift the center of gravity, as shown in paper
[9] and mentioned above. For the He II Balmer-alpha line, which we use as an example, the center of gravity shift
due to penetrating ions was calculated analytically in paper [13] to be

3 17( ) 17 ( ) /10 .PI emA N cm (14)
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The shift of the center of gravity by this amount serves as the reference point for calculating the integrated
intensities of the blue and red wings with the allowance for penetrating ions.

After carrying out the integration in Eq. (10), the profile reduces to

1
2

2

2 1 4 2 1 4 2 1 4
max

1 4 2 1 4 3 6

2 | | 2 | |
3 3

1 2 | |
( ) | | ,

| | 2 2 2
o k o k o k
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k o k o o

c c

Z Z u Zc
S I

Z Z R R c (15)

where �[...] is the Heaviside step function. Thus, for the contributions of the penetrating ions to the red and blue
parts of the integrated profile, we obtain

max
,

0

( )
PI

PI B k
k

I S d (16)

and

max

,
0

( ) ,
PI

PI R k
k

I S d (17)

respectively. Here

2 1 4
max max /(2 ),o ku Z c (18)

which is obtained by equating to zero the argument of the Heaviside step function. Additionally, what is meant in
Eqs. (16) and (17) by k < 0 (or k > 0) is the inclusion of only those components which involve corrections to the
energy which are positive (or negative), implying a blue-shifted (or red-shifted) component of the spectral line.

 By combining the above result with the contribution of the quadrupole interaction (the interaction of the
radiator with perturbing ions outside the bound electron cloud) to the integrated intensities of the blue and read
parts of the profile, we obtain our final result for the degree of asymmetry

I, ,

, ,

,
0.5[ ]

B P B R PI R
act

B PI B R PI R

I I I I

I I I I (19)

where subscript act stands for actual – in distinction to �
quad

.

The combination of Eqs. (4) and (19) connects the degree of asymmetry with the electron density Ne and thus
allows a more accurate determination of the electron density from the experimental asymmetry. We illustrate this
below by the example of the He II Balmer-alpha line.

Table 1 presents the following quantities for the He II Balmer-alpha line at five different values of the actual
electron density:

– the theoretical degree of asymmetry �
act

 calculated with the allowance for penetrating ions,

– the theoretical degree of asymmetry �
quad

 calculated without the allowance for penetrating ions,

– the electron density Ne,quad that would be deduced from the experimental degree of asymmetry while
disregarding the contribution of the penetrating ions,
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– the relative error |Ne,quad – Ne,act| / Ne,act in determining the electron density from the experimental degree of
asymmetry while disregarding the contribution of the penetrating ions.

N
e,act

/(1018cm-3) 2 4 6 8 10

�
act

0.09254 0.11420 0.12837 0.13892 0.14727

�
quad

0.09550 0.12033 0.13774 0.15160 0.16331

N
e,quad

/(1018cm-3) 1.81936 3.41983 4.85657 6.15540 7.33363

|N
e,quad 

– N
e,act 

| /N
e,act

0.09032 0.14504 0.19057 0.23057 0.26663

Table 1 the relative error in determining the electron density N
e
 from the experimental asymmetry degree while disregarding the contribution

of the penetrating ions for the He II Balmer-alpha line. The physical quantities in Table 1 are explained in the text directly above Table 1.

It is seen that in high density plasmas, the allowance for penetrating ions can indeed result in significant corrections
to the electron density deduced from the spectral line asymmetry.

3. CONCLUSIONS

For improving the diagnostic method for measuring the electron density using the asymmetry of spectral lines in
dense plasmas, we took into consideration the contribution to the spectral line asymmetry from penetrating
configurations, i.e., from the configurations where the perturbing ion is inside the bound electron cloud of the
radiating atom/ion. After performing the corresponding analytical calculations, we demonstrated that in high density
plasmas the allowance for penetrating ions can result in significant corrections to the electron density deduced from
the spectral line asymmetry.

We note that the electron densities N
e
 ~ (1018 – 1019) cm-3, which we used in the illustrative example of the He

II Balmer-alpha line, are achievable in plasma spectroscopy. Examples are experiment [14] with a hydrogen plasma
and experiment [15] with a helium plasma.

APPENDIX A. DETAILS OF CALCULATING PERTURBED MATRIX ELEMENTS

The redistribution of intensities of Stark components, along with wavelength shifts due to the presence of perturbing
ions, play a crucial role in determining the degree of asymmetry of the spectral line. These values have been
tabulated according to the robust perturbation theory developed by Oks and Uzer [12] based on using the super-
generalized Runge-Lenz vector derived by Kryukov and Oks [16]. Since the unperturbed system has an additional
constant of the motion (namely the Runge-Lenz vector), then the task of calculating the corrections to the state is
simplified. The reason for this beneficial result is the correction to the Runge-Lenz vector is non-degenerate with
respect to the same states which are degenerate in the correction to the Hamiltonian. The mixing of the states is
elucidated by the Runge-Lenz vector correction under the influence of the perturbing ion. Here are some details,
with formulas being presented in atomic units.

According to paper [16], for the problem of an electron in the field of two Coulomb centers of charges Z
1
 and Z

2
,

the additional conserved quantity is the following projection of the super-generalized Runge-Lenz vector on the
internuclear axis

2

1 2 2 ,
| |z z

L z R z
A Z Z Z

R r
p L e

R r (A.1)

where p, L, and r are the linear momentum, the angular momentum, and the radius-vector of the electron, respectively;
R is the vector directed from charge Z

1
 to charge Z

2
. For the case where R << r, the unperturbed part A

z0 of the
operator A

z
 can be chosen as
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2

0 ,z

L
A

R
(A.2)

corresponding to the unperturbed Hamiltonian of the so-called “united atom” of the nuclear charge Z1 + Z2:

2
1 2

0 ,
2

Z Zp
H

r
(A.3)

Operators H0 and Az0 have common eigenfunctions (the spherical eigenfunctions of the Coulomb problem).
The spectrum of eigenvalues of the operator H0 is degenerate. Therefore, calculating corrections to
the eigenfunctions of the operator H0 using the standard perturbation theory would require going to the 2nd

order of the degenerate perturbation theory, thus involving generally infinite summations (see, e.g., the textbook
[17]).

In distinction, the spectrum of eigenvalues of the operator A
z0 is nondegenerate (the eigenvalues being – l(l +1)/

R). Therefore, the corrections to the eigenfunctions can be easily calculated in the 1st order of the standard
nondegenerate perturbation theory. The coefficients of the corresponding linear combinations of the unperturbed
eigenfunctions are

0

( 1) ( 1)
| |z z

l l l l
nl m A A nlm

R
(A.4)

and do not involve infinite summations. This example is another illustration of the advantages of the robust
perturbation theory developed in paper [12] over the standard perturbation theory.

In this way, we obtained the following expression for the 1st order corrections to the eigenfunctions for the
specific case of Z1 = Z2 = Z:

1
2 2 2 2 2

(1) (0)

( ) ( )
5

(2 1)(2 1)
,

[ ( 1) ( 1)]nlm nl m

l m n l

l l
Z R

n l l l l
(A.5)

where l> denotes the greater value between l and l�. The selection rules are l��= l ± 1 and m� = m.

We note that in the opposite case, where R >> r, the unperturbed part A
z1,0 of the operator A

z
 can be chosen in the

usual way

2
1,0 1( ) ,z z

z
A z p p Z

r
rp (A.6)

where the notation (rp) stands for the scalar product (also known as the dot-product) of the operators r and p. The
corresponding unperturbed Hamiltonian is

2
1

1,0 ,
2

Zp
H

r
(A.7)

The operator A
z1,0 has a nondegenerate spectrum of eigenvalues equal to q / n, where q = (n1 – n2) is the

difference of the parabolic quantum numbers. Therefore, the first nonvanishing corrections to the common
eigenfunctions of the operators H1,0 and A

z1,0 can be easily calculated in the 1st order of the standard nondegenerate
perturbation theory. The coefficients of the corresponding linear combinations of the unperturbed eigenfunctions
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are

2| | ,

q q

n nnl m L nlm
R

(A.8)

where | q’ – q| = 2, as follows from the selection rules.

In distinction, for obtaining the same corrections to the eigenfunctions using the operator H1,0, whose spectrum
of eigenvalues is degenerate, it would require going to the 2nd order of the degenerate perturbation theory and
dealing with its complications, as Sholin did in his paper [2].

APPENDIX B. TABLE OF INTENSITIES AND ENERGY LEVEL CORRECTIONS FOR THE HE II
BALMER-ALPHA LINE

The perturbed intensity and frequency corrections for He II Balmer-aslpha line are presented below. The quantum
numbers of the upper and lower sublevels are in the spherical quantization.

Upper sublevel Lower sublevel 0
Ik

1
Ik

1
k

322 211
768

4715
0

173

5670

321 211
384

4715

32

14145

197

5670

321 210
384

4715

64

2829

37

567

321 200 0
2792

127305

949

2835

320 211
128

4715

128

127305

41

1134

320 210
512

4715

3968

127305

181

2835

320 200 0
11168

381915

953

2835

311 211 0
32

14145

19

810

311 210 0
232

14145

31

405

311 200
160

2829

400

25461

131

405

310 211 0
8

3105

43

810

310 210 0
2512

127305

19

405
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310 200
160

2829

280

8487

143

405

300 211
5

943

40

25461

53

810

300 210
5

943

295

101844

67

405

300 200 0
5525

305532

19

81
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