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ABSTRACT: We consider the effect of helical trajectoriesof perturbing electronson thewidth of Hydrogen or Deuterium
Spectra Lines (HDSL). We concentrate on the case of a strong magnetic field B, such that the so-called non-adiabatic
Stark width practically vanishes and only the so-called adiabatic Stark width remains. Such strong magnetic fields
encountered, e.g., in white dwarfs. We calculate analyticaly the adiabatic Stark width for this case and compare it with
the adiabatic Stark width for the rectilinear trajectories of perturbing electrons. We show that the adiabatic Stark width
calculated with the allowance for helical trajectories of perturbing electrons does not depend on the magnetic field if the
magnetic field is sufficiently strong. We demonstrate that, depending on the particular HDSL and on plasma parameters,
the adiabatic Sark width, calculated with the allowance for helicd trajectories of perturbing electrons, can be either by
orders of magnitude smaller, or of the same order, or several times higher than the adiabatic Stark width, calculated for
rectilinear trajectories of perturbing electrons. We show that for the range of plasma parameters typical for DA white
dwarfs, the neglect for the actual, helical trajectories of perturbing electrons can lead to the overestimation of the Stark
width by up to one order of magnitude for the alpha- and beta-lines of the Lyman and Balmer series, or to the
underestimation of the Stark width by severa times for the delta- and higher-lines of the Bamer series. Therefore, our
results should motivate astrophysicists for a very significant revision of all existing calculations of the broadening of
hydrogen lines in DA white dwarfs. The experimental/observational studies, for which the effect of helical trajectories
of perturbing electrons on the Stark width might be significant, are not limited by white dwarfs, but can be performed in
a variety of laboratory and astrophysical plasmas emitting the hydrogen or deuterium Ly-alpha line.
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1. INTRODUCTION

In paper [1] there was developed a general framework for calculating shapes of Hydrogen or Deuterium Spectral
Lines (HDSL) in strongly-magnetized plasmas with the allowance for helical trajectories of perturbing eectrons. It
was shown that in this situation the primary effects manifests by the non-vanishing first order term ®®(B) of the
Dyson expansion of the eectron broadening operator — in distinction to the case of rectilinear trajectories, where
thefirst non-vanishing termappeared only in the second order. By usingtheLy lineasanexample, it was demonstrated
that the shape of each of the two c-components can become a doublet: in addition to the shifted component, there
can appear also an unshifted component. Moreover, the shape of each of the two o-components can also become a
triplet: in addition to the shifted and unshifted component, there can appear also a component shifted to the opposite
wing of the line. Both the positions and the intensities of the shifted components depend strongly on the magnitude
of ®D(B). The primary effect in the entire spectral line was a significant increase of theratio of the intensity of the
central peak to the intensity of any of the two lateral peaks.

In the present paper we consider the direct effect of helical trajectories of perturbing eectrons on the width of
HDSL. The focus is at the case of a strong magnetic field B, such that the so-called non-adiabatic Stark width
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practically vanishes and only the so-called adiabatic Stark width remains. Such strong magnetic fields encountered,
eg., in white dwarfs. We calculate analytically the adiabatic Stark width for this case and compare it with the
adiabatic Stark width for the rectilinear trajectories of perturbing eectrons, the latter being relevant to the case of
vanishingly small magnetic fields. We show that the adiabatic Stark width calculated with the allowance for helical
trajectories of perturbing dectrons does not depend on the magnetic field if the magnetic fied is sufficiently strong.

We demonstrate that, depending on the particular HDSL and on plasma parameters, the adiabatic Stark width,
calculated with the allowance for helical trajectories of perturbing eectrons, can be either by orders of magnitude
smaller, or of the same order, or several times higher than the adiabatic Stark width, calculated for rectilinear
trajectories of perturbing dectrons. We show that for the range of plasma parameters typical for DA white dwarfs
(i.e, for white dwarfs emitting hydrogen lines), the neglect for the actual, helical trajectories of perturbing dectrons
can lead to the overestimation of the Stark width by up to one order of magnitude for the alpha- and beta-lines of the
Lyman and Balmer series, or to the underestimation of the Stark width by several times for the ddta- and higher-
lines of the Balmer series. Therefore, our results should motivate astrophysicists for a very significant revision of
all existing calculations of the broadening of hydrogen lines in DA white dwarfs.

We also explain that experimental/observational studies, for which the effect of helical trajectories of perturbing
eectrons on the Stark width might be significant, are not limited by white dwarfs, but can be performed in a variety
of laboratory and astrophysical plasmas emitting the hydrogen or deuterium Ly-alpha line.

2. ANALYTICAL RESULTS

For hydrogen/deuterium atoms in a strongly magnetized plasma, the radius-vector R(t) of a perturbing eectron and
the dectric field E(t) it creates at the location of the radiating atom, can be represented in the form

R(t) = V,tB/B + p[1 + (r,/p) cos(wyt + ¢)] + pxB [r, /(pB)] sin(wgt + ¢), 1)
E(t) = eRMO/ROI,

where the z-axis is chosen along the magnetic field B; pxB stands for the cross-product (also known as the vector
product) of the impact parameter vector p and the magnetic field B; e is the electron charge. Here

Moy = vp/a)B, o, = eB/(mg), 2

where v is the éectron velocity in the plane perpendicular to B; o, is the Larmor frequency (also known as the
cyclotron frequency).

Without the allowance for helical trajectories of perturbing eectrons, the effect of the magnetic field on the
width of HDSL becomes noticeable where the magnetic field exceeds certain critical value B, Let us briefly
remind the physical reason for this. In the so-called Conventional Theory (CT) of the Stark broadening of HDSL
(which is frequently referred to as Griem's theory — as presented in Kepple-Griem paper [2] and in Griem’s book
[3]) the eectron impact broadening operator @, (where a and b label, respectively, the upper and lower states
involved in the radiative transition) is a linear function of the following integral over impact parameters:

T dp/p- (3)

This integral diverges both at large and small p, so that in the CT the integration got truncated by some p . at
the lower limit and by some p, . at the upper limit. Thelower limit p_. is chosen such asto preserve the unitarity of
S-matrices involved in the calculation and is then called Weisskopf radius p,,, (discussed in more detail below). At
the absence of the magnetic field, the upper limit p__ is chosen from therequirement that the characteristic frequency
v/p of the variation of the dectric fied of the perturbing ion should exceed the plasma eectron frequency O
according to the general plasma property to screen dectric fields at frequencies lower than @ SO, itischosenp,
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= v/mpe, which after substituting the perturbing electron velocity v by the mean thermal velocity v, becomes the

Debye radius p,,.

The uniform magnetic field B reduces the spherical symmetry of the problem to the axial symmetry. The
fundamental consequence s that in this situation the electron broadening operator @ (and the corresponding Stark
width) should be subdivided into two distinct parts: the adiabatic part ®_, , and the nonadiabatic part ® . The
adiabatic part is controlled by the component of the eectric fied (of the perturbing eectron) paralld to B, while the
nonadiabatic part is controlled by the component of the dectric field (of the perturbing dectron) perpendicular to B.

Physically the nonadiabatic contribution to the broadening is due to the virtual transitions between the adjacent
Zeeman sublevel separated by Ao, = w,/2. For the nonadiabatic contribution to be effective, the characteristic
frequency v/p of the variation of the electric field of the perturbing ion should exceed Aw,. This leads to the
modified upper cutoff for the integral (3):

Prex = M n(v/u)pe, V/IAm,) = mi n(v/u)pe, 2vlw,), 4
which becomes smaller than v/m,, when
Aoy = 02> o (5)
or
B> B, woq = 4C(MN)Y2, B, a(TesId) = 3.62x107[N (cmr)] 2, (6)

where N, is the eectron density. Obviously, the greater the ratio B/B_, the smaller the nonadiabatic contribution to
the width becomes. Such inhibition of the nonadiabatic contribution to the width was studied in detail in paper [4]
— see also Sect. 4 of review [5].

In distinction, the adiabatic contribution to the width is not affected by the fulfilment of condition (5) or (6).
Physically this is because the adiabatic contribution is not related to the quantum effect of the virtual transitions
between the adjacent Zeeman sublevels. Rather, the physics behind the adiabatic contribution is the phase modulation
of the atomic oscillator by the paralld to B component of the eectric field of the perturbing electron (the phase
modulation being, in essence, a classical effect — see. e.q., review [6].

Thus, it is clear that as B/B,,, ., Pecomes much greater than unity, practically the entire width becomes due to
the adiabatic contribution. This happens when p = V/IAw, diminishes to the value significantly below p ;. = py,.
i.e., when Aw, > v/p,,, Which after substituting v by v, = (2T /m)¥?, T_ being the electron temperature, becomes

A(’OB > QWe = VT/pWe’ (7)
where Q) is called the Weiskopf frequency, or
B>B,=2mcv./(ep,,)- (8)

The focus of the present paper is at very strong magnetic fields satisfying the condition (8), which will be
reformulated more explicitly below. In this situation, the effect of helical trajectories of the perturbing e ectrons can
be presented in the purest form — without the interplay with the magnetic-field-caused inhibition of the nonadiabatic
contribution studied in paper [4].

For the purpose of the comparison, let us first calculate the adiabatic contribution for rectilinear trajectories of
perturbing eectrons in the case of a vanishingly small magnetic field B — in the spirit of the CT, but slightly more
accurately. By using the parabolic coordinates with the z-axis along B, the adiabatic part (®, ), of the electron
broadening operator can be represented in the form (the suffix “rec” stands for “rectilinear trajectories’)

Prmax (V)
(Do rec)a = 20N IBMON(Z, - 2,)(Z. - Z,) @] 2n < v (1 2+ [ dplp)/V? >, ©)

Pmin (V)

International Review of Atomic and Molecular Physics, 8 (2), July-December 2017 / 63



Eugene Oks

where <...> , stands for averaging over the distribution of velocities of perturbing electrons and 1/2 stands for the
contribution of the so-called strong collisions (i.e., the collisions with the impact parameters p < p . (V). In Eq. (9),
Z is the operator of the z-projection of the radius-vector of the atomic eectron. In the parabolic coordinates, this
operator has only diagonal matrix elements in the manifold of the fixed principal quantum number n, so that the
operator (®, ), aso has only diagonal matrix elements, which we denote ,(®, ), Here o and 3 correspond,
respectively, to upper and lower sublevels of the leves a and b involved in the radiative transition.

Then the adiabatic widthy,, . = —Re[ (@, )] can be expressed as follows

Prrad V)
Yopree = [BNINX (2mA]2r <v [(1/2 + [ dplp)V]>,,, (10)
Prin(V)
where
Xaﬁ = naqa - anﬁ’ qa = (nl - nZ)a’ qa = (nl - nZ)ot’ (11)

where n, and n, are the parabolic quantum numbers (while q is often called the electric quantum number). We note
that v, . isthehalf-width at half maximum of the corresponding component of theline. We also note that X, isthe
standard labe of Stark components of HDSL, but for avoiding any confusion we emphasize that in the present
paper we consider the Zeeman triplet of HDSL, consisting of the central (unshifted) =-component and two
c-components symmetrically shifted to the red and blue parts of the line profile.

For the adiabatic width we have p__ (V) = v/(npe, as explained above. As for p . (v), itsrole is played by the
adiabatic Wei sskopf radius

Puea(V) = KV, Ky = 3IX Jr/m,. (12)

The adiabatic Weisskopf radius arises naturally without any uncertainty as a result of the exact calculation of
the adiabatic Stark width in paper [7]. This is the primary distinction of the adiabatic Weisskopf radius from the
Weisskopf radius p,,, in Griem’s theory. In the latter it was chosen from the requirement to preserve the unitarity of
the S-matrices entering the calculation:

I1-S(p,V) S*(p, V)< 2, (13)
where the symbol * stands for the complex conjugation.

Therefore, the choice of p,, . in Griem’s theory
PuwclV) =KV, ks = A(n2—n2)/m, (14)

has an inherent uncertainty by a factor of 2 (for the detailed discussion of this uncertainty see, e.q., paper [8] or
Appendix B from book [9]). Beow, while calculating the velocity average in Eg. (9), we will use

Prin(¥) = Py¥) = KV, (15)

where k would be ether k_, from Eq. (11) or k from Eq. (13), so that for theratio p__ (V)/p,; (V) we have
Pra V) Pin(V) = VA (ke ). (16)

Then the result of the integration over the impact parameters in Eq. (10) can be expressed as follows
In[(v?/v,?)/D], D = ke Jv2. a7

While using k = k_, defined in Eq. (12), the dimensionless constant D becomes
D = 3IX zlho/(Mmy;?) = 3IX Jho /(2T ) = 5.57x1(Tll|Xaﬁ|[Ne(cmS)]UZ/Te(eV). (18)

At this point we calculate the vel ocity averagein Eq. (10) by employing the three-dimensional isotropic Maxwell
distribution f(p)dp = (4/m¥?)p*exp(—p?), wherep = V/v_:
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<{In[(v¥/vAID] + U2} V] > , = (2/7*?)[In(1/D) +1/2 - T'] = (2/n*?)[In(1/D) — 0.0772], (29
whereT" = 0.5772 isthe Euler constant. So, finally the adiabatic width in the case of rectilinear trajectories becomes:
Vapree [6n”2h2X N J(m2v,)] [In(1/D) - 0.0772], v, = (2T /m)¥2, (20)

where D was defined in Eq. (18).

Now we start calculating the adlabaI|CW|dthy 4 for thecase of the actual tragjectories (i.e., helical trajectories)
of perturbing eectrons, the suffix “hd” standlng for “helical trajectories’. Again we consider strong magnetic
fields satisfying the condition (8). By using the explicit expression (12) for the adiabatic Weisskopf radius and
substituting v by v, the condition (8) can be reformulated more explicitly as follows

B>B, B,=2TJ/GXler)or B (Tesla) = 9.2x10°T (eV)/[X ;| Tesla, (21
where 1., = h/(mc) = 2.426x107*° cm is the Compton wavelength of electrons.

Such strong magnetic fields are encountered, for example, in plasmas of DA white dwarfs (i.e., white dwarfs
emitting hydrogen lines). According to observations, the magnetic field in plasmas of white dwarfs can range from
10° Teslato 10° Tesla (see, e.g., papers [10, 11]), thus easily exceeding the critical value from Eq. (21) — given that
T, ~ 1 eV in the white dwarfs plasmas emitting hydrogen lines.

For completenessit should be mentioned that we consider the situation where the temperature T of the radiating
atoms satisfies the condition

T, << (11.12 keVIn)(M/M, )2, (22)

where M is the mass of the radiating atom, M,, is the mass of hydrogen atoms, and n is the principal quantum
number of the energy leve, from which the spectral line originates. Under this condition, the Lorentz field effects
can be disregarded compared to the “pure’ magnetic field effects.

It should be also noted that at any value of the magnetic field (no matter how large or small), the Stark width of
the central (unshifted) component of the Ly-alpha Zeeman triplet has practically only the adiabatic contribution —
because the non-adiabatic contribution vanishes within the accuracy of about 1%, as shown in detail in paper [4].
So, the experimental/observational studies, for which the effect of helical trajectories of perturbing electrons
on the Stark width might be significant, are not limited by white dwarfs, but can be performed in a variety of
laboratory and astrophysical plasmas emitting the hydrogen or deuterium Ly-alpha line (by using the polarization
analysis).

Based on Eqg. (1), the z-component (i.e., the component paralld to B) of the dectric fidd of the perturbing
eectron at the location of the radiating atom can be represented in the form

E,(t) = e(v,)/[p*v, 12+v o +2(pv foy) cos(m,t+¢)]¥2, (23
For comparison, in the case of the rectilinear trajectories for vanishingly small B it was
E, () = &lpe+ ve)/(p*+v2t?)*?, (24)

where e, is the unit vector along the z-axis. Here and below, for any two vectors a and b, the notation ab stands for
their scalar product (also known as the dot-product). It should be noted that Eq. (23) in the limit of B = 0 does not
reduce to Eq. (24). This is because Eq. (23) adequatdy describes the situation only for the strong magnetic fields
defined by the condition

(V/@p)? << [PV ]2 (25)
It can be reformulated as
[me/(SXmﬁekcB)]2vp2vz2 << 1, (26)
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which after substituting v ? by its average value over the two dimensional Maxwell distribution <v > = v,? and v 2
by its average value over the one dimensional Maxwell distribution <v,>> = v, %2, can be rewritten as

B>>B,, = 22my 26X Jeh) = 2U2T J(3X Jer) or B, (Tesla) = 6.5x10°T (&V)/|X . @7)

This condition is similar to the condition (8) or (21), under which practically the entire width of HDSL becomes
due to the adiabatic contribution only.

min

The starting formula for the adiabatic width in the case of helical trajectories of perturbing electronsy
Re[aﬁ(cbad 'hd)ﬁa] (the suffix “hel” stands for “helical trajectories’)

aphed T

Vopna =N [ AV, £, (V) [dv, £,(v,) (V2 +V2) 0 (v,,v,), 28)
—co 0

where the operator o(v,, v p), which is physically the cross-section of the so-called optical collisions responsible for
the broadening of the spectral line, has the form:

o(v,,V,) = poan[l— S.(p.V,:V,) S, (P, V.V, )], - (29)

Here f, (v) and f,(v) are the 1D- and 2D-Maxwell distributions, respectively; S, and S, are the corresponding
scattering matrices; the symbol [...]q} stands for the average over the phase ¢ entering Eq. (23). In the spirit of the
CT, one gets

1= S,(0. 50 V,) S (9.V,0V,) = [3X h (2m @] [ HE, (1) [ dt, E, (1), (30)

where E (1) is given by Eq. (23).
It is important to emphasize the following. The double integral in Eq. (30 vanishes for the odd part of E (t),

while for the even part of E (t) it is equal to the one half of the square of [ dt E,(t) —see Appendix A. Therefore it

is sufficient to calculate the double integral just for the even part of E (1), i.e., for
E, (0o, = [E,(1) —E,(-D]/2. (31)

Before doing this, we break the integration over the impart parameters in Eg. (29) into the following two parts

o(v,, v p) =06,(v,V p) +0,(V,V p), (32
where
6.(V,.v,) = | dp2mp [1-5,(p.,.%,)S, (0. V..V, ). (39)
oV, V) = J dp 2np [1-S(p, V,, V) S,*(p, V, V). (34)
Here
Py = vp/ 0. (35)
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While expanding E(t),,,, from Eq. (31) in terms of the small parameter p /p = Vp/(con) and keeping the first
non-vanishing term of the expansion, we obtain

E,(1),., = (sine) (3epv v o) t[sin(et)]/(p? + v 2252, (36)
Then
jI; dt E(1),,., }m dt, E(t)oe, = (1/2)[7}; dt E(1)]> = (sin? (p)(ZeZQ)BZVpZ/VZB) [K,(ogp/ IV D1% (37)

where K (s) is the modified Bessel function of the 2™ kind. After averaging over the phase ¢ in Eq. (37), we get

[1-Sp, v, V,) S*(p, v, V)], = [3X , W2M)I? (0,2, 21V, [K (/I DI, (39)
After substituting the expression (38) into Eq. (33) and integrating over the impact parameters, we obtain
o,(V,, V) = (9n2/8) (X m)A(v 2Iv,?) MeijerG[{{} .{3/2}} {{0,0,2} .{}}, v IV, (39

where MeijerGl...] is the Meijer G-function.

Now we proceed to calculating c,(v,, v p) defined by Eq. (34). While expanding E (t),, from Eq. (31) in terms
of the small parameter p/p, = w,p/V . and keeping the first non-vanishing term of the expansion, we obtain

E,(1),., = (sine) (3epv. WV o) t{sin(w,)]/(v pzl(oBZ + v 24252, (40)
Then
jI; dt E(1),., }m dt, E(t),., = (U2 jI; dt E(1)]? = (sin® 9)(2€p’m,*V ){ K [(v pzlvzz)”2 132 (41)

After averaging over the phase ¢ in Eq. (41), we get

[1-S(p. v, v)) S*(p. v, V)], = [3X ;1/(2m)]? (e p?V ){ K [(v pzlvzz)”2 132 (42)
After substituting the expression (42) into Eq. (34) and integrating over the impact parameters, we obtain
o,(V,, V) = (9n/8) (X ,Aim)*(v *v.%) { K [(v, pzlvzz)”2 132 43)

By combining Egs. (39) and (43), we get:

o(V, V) = 0y(V,, V) + 0,(v,, V) =

(9n/8) (X ,lm )2 (v, 2V, ){ nV2MejerG[{{}.{3/2}}.{{0,0,2} {}}, VAV + (Vv KT, pzlvzz)”2 1%. (49
According to Eqg. (28), the adiabatic width in the case of helical trajectories of perturbing electrons is

veloc?

Vapne (45)

where <...> , stands for the average over velocities v, and v,. In order to get the message across in a relatively
uncomplicated form, we simply substitute v pz by its average value over the two dimensional Maxwell distribution
<v,2>=v,?and v ? by its average value over the one dimensional Maxwell distribution <v > = v,/2. Asaresult, we
obtain the final expression:

Vapna = 19X g M) N vy or v 4, (s7) = 1.8x107 X 2N (cn®)J/[T (eV)] 2, v, = (2T /m)*2 (46)

It should be noted that Vapne does not depend on the magnetic field in the case where the magnetic field is strong
enough to satisfy the condition (27).

= Ne <(V22 + VpZ)JJZ G(Vz’ Vp)>

af,hel

Therole of the allowance for helical trajectories of perturbing eectrons can be best understood by considering
theratio of vy , , from Eq. (46) to Vapree from Eq. (20):

B.hel
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= 0.74/[In(UD) —0.0772]. (47)

Figure 1 shows this ratio versus the dimensionless parameter D, which is defined by Eq. (18) and which is
physically the ratio p,(v;) / p,. It is seen that for D < 0.44, the allowance for helical trgjectories of perturbing
eectrons decreases the adiabatic width, while for D > 0.44, the allowance for helical trajectories of perturbing
eectrons increases the adiabatic width. The fact that, the allowance for helical trajectories of perturbing eectrons
could lead to two different outcomes (i.e., to either decreasing or increasing the adiabatic width of HDSL) is a
counterintuitive result.

ratio = ya[},hell Yaphel

wdth ratio
6

5
4
3

- D
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Figure 1: Theratio of adiabatic Widthsy(mhelly(mhel versusthe dimensionless parameter D, which is defined by Eq. (18)
and which is physically theratio p,,,(v,)/p, (solid curve). The dashed horizontal line isthere for better
visualizing the tworegions: y <landy > 1.

aﬁ,hellyaﬁ,hel aB,heI/Yaﬁ,heI

Figures 2 showstheratioy,, /v, .« from Eq. (47) versus the electron density N for therange of N_ relevant to
the DA white dwarfsat T_= 1 €V. The lower curveis for the Lyman-alpha line, for which the adiabatic width is non-
zero only for the two mt-components of [X 2. Theupper curveisfor the Balmer-betaline— specifically for its two
intense -components of |Xaﬁ| = 10.

otﬁl =

Figure 3 shows more clearly theratio v, /v,, 4 for the electron densities below 2x10*" cmr® for the Lyman-
alpha line (the lower curve) and for the two intense t-components of |Xaﬁ| = 10 of the Balmer-beta line (the middle
curve). The upper curve shows the ratio vy for the two most intense w-components of [X 28 of the
Balmer-ddta line.

upel Vap e opl =

We also present bdow explicit practical formulas for the adiabatic width (with the allowance for helical
trajectories of perturbing eectronsin the case of strong magnetic fields satisfying the condition (27)) in thewave ength
scale for the following five HDSL — namely, the Full Width at Half Maximum (FWHM) AL, .

For Lyman-alpha:
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©c o o o

2-10Y 4° 10 67 101" 8 10V 1° 1o|}Ig
Figure2. Theratioy,, /v

p el from Eq. (47) versusthe electron density N_for the range of N, relevant to the DA white
dwarfsat T,=1eV. Thelower curveisfor the Lyman-alpha line. The upper curveisfor the
Balmer-beta line — specifically for its two intense m-components of |Xaﬁ| =10.

width ratio
3,

L L ,\b
2.57101% 5°10% 7.5°10% 1-10Y 1.25" 10%71.5" 10%71.75° 10Y 2° 10%7

Figure 3: Theratio yaﬁyhelly(wyheI for the electron densities below 2x10Y cm® for the Lyman-alpha line (the lower curve) and for the
two intense w-components of |Xaﬁ| =10 of the Balmer-beta line (the middle curve). The upper curve shows the ratio

Vap hel/ymB ne 107 the two most intense m-components of |Xaa| = 28 of the Balmer-delta line.
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Ahyp o(nM) = LIXI0ZN(cm?) / [T (&V)] 2. (48)

For Balmer-alpha line components:

Ay (M) = 8.1X1072° X *Ne(CT)/[ T (eV)] 2. (49)
For Balmer-beta line components:

Ahyyp (M) = 4.5x1020 X 2Ne(em?®) / [T (eV)]*~. (50)
For Balmer-gamma line components:

Al (M) = 3.7X10720 X *Ne(CT)/[ T (V)] 2. (51)
For Balmer-delta line components:

Al (M) = 3.2610720 X *Ne(CT)/[ T (eV)] 2. (52)

We remind that Xop is the combination of the parabolic quantum numbers defined in Eq. (11).

Finally, we note that under the condition (21), the Stark profileof theentireHDSL issimply thesum of L orentzians
corresponding to each Stark component

S(Aw) = X jaﬁ Laﬁ(Aco),

L,(Aw) = | dF W(F)(Un) v,4/[v,,2 + (Ao —CF)Y, v,,=7 C,; = 3X,hl(2me). (53)
0

ap,hel + yaﬁ,nat’ o

Herejaﬁ is therdative intensity of the Stark component labded “af”, W(F) is the distribution of the quasistatic
field F, Vapra is the natural (radiative) width of the particular Stark component. The summation is over both =- and
c-components, but for the latter v, = 0.

3. CONCLUSIONS

We considered the effect of helical trajectories of perturbing eectrons on the width of HDSL for the case of strong
magnetic fields, such that the non-adiabatic Stark width practically vanishes and only the adiabatic Stark width
remains. Such strong magnetic fieds encountered, e.g., in white dwarfs. We calculated analytically the adiabatic
Stark width for this case and its ratio to the adiabatic Stark width for the rectilinear trajectories of perturbing
eectrons. We demonstrated that the adiabatic Stark width calculated with the allowance for helical trajectories of
perturbing e ectrons does not depend on the magnetic field for the case of strong magnetic fields under consideration.

We showed that, depending on the particular HDSL and on plasma parameters, the adiabatic Stark width,
calculated with the allowance for helical trajectories of perturbing eectrons, can be either by orders of magnitude
smaller, or of the same order, or several times higher than the adiabatic Stark width, calculated for rectilinear
trajectories of perturbing eectrons. Such a variety of outcomes is a counterintuitive result. We also demonstrated
that for the range of plasma parameters typical for DA white dwarfs (i.e, for white dwarfs emitting hydrogen lines),
the neglect for the actual, helical trajectories of perturbing eectrons can lead to:

— the overestimation of the Sark width by up to one order of magnitude for the alpha- and beta-lines of the
Lyman and Balmer series;

— theunderestimation of the Sark width by several times for the delta- and higher-lines of the Balmer series.

Therefore, our results should motivate astrophysicists for a very significant revision of all existing calculations
of the broadening of hydrogen lines in DA white dwarfs.

Thelast but not least: at any value of the magnetic field (no matter how large or small), the Stark width of the
central (unshifted) component of the Ly-alpha Zeeman triplet has practically only the adiabatic contribution, as
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shown in detail in paper [4]. So, the experimental/observational studies, for which the effect of hdlical trajectories
of perturbing eectrons on the Stark width might be significant, are not limited by white dwarfs, but can be performed
inavariety of laboratory and astrophysical plasmas emitting the hydrogen or deuterium Ly-alpha line (by using the
polarization analysis).

Appendix A. Proof of the symmetry properties of the double integral in Eq. (30)
We consider the following two double integrals:

1= ] ottt ] o, gt), (A1)
J= I dig(t)[et, o(t), (A2)

Obviously
I+ J=[]; dtg(t)] . (A3)

If the function g(t) is even, so that g(—t) = g(t), then after substituting u = —, the integral J becomes

J= }; du g(u)zdtl ) (A.4)

After further substituting w = —t,, theintegral Jfinally yields

J= zdug(u)idwg(w) -1, (A.5)
S0 that
= (1+9/2= W2 ] dtg(t))”. (A.6)

If the function g(t) is odd, so that g(-t) = —g(t), then after substituting u = —t and the subsequent substation
= —t, we would still get

I=(1+3)/2=W2)] dg). (A7)
However, for the odd function g(t), the integral in the right side of Eq. (A.7) is zero.

References
[1] E. Oks, J. Quant. Spectrosc. Rad. Transfer 171, (2016) 15.
[2] P. Kepple and H.R. Griem, Phys. Rev. 173 (1968) 317.
[3] H.R. Griem, Spectral Line Broadening by Plasmas (Academic, New York) 1974.
[4] A. Derevianko and E. Oks, Phys. Rev. Letters 73 (1994) 2059.
[5] Oks, 2017, J. Phys. Conf. Ser. 810 (2017) 012006.

International Review of Atomic and Molecular Physics, 8 (2), July-December 2017 / 71



Eugene Oks

[6] V.S Lisitsa, Sov. Phys. Uspekhi 122 (1977) 603.
[7] Ya. Ispolatov and E. Oks, J. Quant. Spectr. Rad. Transfer 51 (1994) 129.
[8] E. Oks, J. Quant. Spectrosc. Rad. Transfer 152 (2015) 74.

[9] E. Oks, Diagnostics of Laboratory and Astrophysical Plasmas Using Spectral Lines of One-, Two-, and Three-Electron Systems
(World Scientific, New Jersey) 2017.

[10] B. Franzon and St. Schramm, J. Phys. Conf. Ser. 861 (2017) 012015.
[11] D. Reimers, S. Jordan, D. Koester, and N. Bade, Astron. Astrophys. 311 (1996) 572.

72 \ International Review of Atomic and Molecular Physics, 8 (2), July-December 2017





