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ABSTRACT: We consider the effect of helical trajectories of perturbing electrons on the width of Hydrogen or Deuterium
Spectral Lines (HDSL). We concentrate on the case of a strong magnetic field B, such that the so-called non-adiabatic
Stark width practically vanishes and only the so-called adiabatic Stark width remains. Such strong magnetic fields
encountered, e.g., in white dwarfs. We calculate analytically the adiabatic Stark width for this case and compare it with
the adiabatic Stark width for the rectilinear trajectories of perturbing electrons. We show that the adiabatic Stark width
calculated with the allowance for helical trajectories of perturbing electrons does not depend on the magnetic field if the
magnetic field is sufficiently strong. We demonstrate that, depending on the particular HDSL and on plasma parameters,
the adiabatic Stark width, calculated with the allowance for helical trajectories of perturbing electrons, can be either by
orders of magnitude smaller, or of the same order, or several times higher than the adiabatic Stark width, calculated for
rectilinear trajectories of perturbing electrons. We show that for the range of plasma parameters typical for DA white
dwarfs, the neglect for the actual, helical trajectories of perturbing electrons can lead to the overestimation of the Stark
width by up to one order of magnitude for the alpha- and beta-lines of the Lyman and Balmer series, or to the
underestimation of the Stark width by several times for the delta- and higher-lines of the Balmer series. Therefore, our
results should motivate astrophysicists for a very significant revision of all existing calculations of the broadening of
hydrogen lines in DA white dwarfs. The experimental/observational studies, for which the effect of helical trajectories
of perturbing electrons on the Stark width might be significant, are not limited by white dwarfs, but can be performed in
a variety of laboratory and astrophysical plasmas emitting the hydrogen or deuterium Ly-alpha line.
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1. INTRODUCTION

In paper [1] there was developed a general framework for calculating shapes of Hydrogen or Deuterium Spectral
Lines (HDSL) in strongly-magnetized plasmas with the allowance for helical trajectories of perturbing electrons. It
was shown that in this situation the primary effects manifests by the non-vanishing first order term �(1)(B) of the
Dyson expansion of the electron broadening operator – in distinction to the case of rectilinear trajectories, where
the first non-vanishing term appeared only in the second order. By using the Ly� line as an example, it was demonstrated
that the shape of each of the two �-components can become a doublet: in addition to the shifted component, there
can appear also an unshifted component. Moreover, the shape of each of the two �-components can also become a
triplet: in addition to the shifted and unshifted component, there can appear also a component shifted to the opposite
wing of the line. Both the positions and the intensities of the shifted components depend strongly on the magnitude
of �(1)(B). The primary effect in the entire spectral line was a significant increase of the ratio of the intensity of the
central peak to the intensity of any of the two lateral peaks.

In the present paper we consider the direct effect of helical trajectories of perturbing electrons on the width of
HDSL. The focus is at the case of a strong magnetic field B, such that the so-called non-adiabatic Stark width
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practically vanishes and only the so-called adiabatic Stark width remains. Such strong magnetic fields encountered,
e.g., in white dwarfs. We calculate analytically the adiabatic Stark width for this case and compare it with the
adiabatic Stark width for the rectilinear trajectories of perturbing electrons, the latter being relevant to the case of
vanishingly small magnetic fields. We show that the adiabatic Stark width calculated with the allowance for helical
trajectories of perturbing electrons does not depend on the magnetic field if the magnetic field is sufficiently strong.

We demonstrate that, depending on the particular HDSL and on plasma parameters, the adiabatic Stark width,
calculated with the allowance for helical trajectories of perturbing electrons, can be either by orders of magnitude
smaller, or of the same order, or several times higher than the adiabatic Stark width, calculated for rectilinear
trajectories of perturbing electrons. We show that for the range of plasma parameters typical for DA white dwarfs
(i.e, for white dwarfs emitting hydrogen lines), the neglect for the actual, helical trajectories of perturbing electrons
can lead to the overestimation of the Stark width by up to one order of magnitude for the alpha- and beta-lines of the
Lyman and Balmer series, or to the underestimation of the Stark width by several times for the delta- and higher-
lines of the Balmer series. Therefore, our results should motivate astrophysicists for a very significant revision of
all existing calculations of the broadening of hydrogen lines in DA white dwarfs.

We also explain that experimental/observational studies, for which the effect of helical trajectories of perturbing
electrons on the Stark width might be significant, are not limited by white dwarfs, but can be performed in a variety
of laboratory and astrophysical plasmas emitting the hydrogen or deuterium Ly-alpha line.

2. ANALYTICAL RESULTS

For hydrogen/deuterium atoms in a strongly magnetized plasma, the radius-vector R(t) of a perturbing electron and
the electric field E(t) it creates at the location of the radiating atom, can be represented in the form

R(t) = vztB/B + [1 + (rBp/�) cos(�Bt + �)] + xB [rBp/(�B)] sin(�Bt + �), (1)

E(t) = eR(t)/[R(t)]3,

where the z-axis is chosen along the magnetic field B; xB stands for the cross-product (also known as the vector
product) of the impact parameter vector  and the magnetic field B; e is the electron charge. Here

rBp = vp/�B,   �B = eB/(mec), (2)

where vp is the electron velocity in the plane perpendicular to B; �B is the Larmor frequency (also known as the
cyclotron frequency).

Without the allowance for helical trajectories of perturbing electrons, the effect of the magnetic field on the
width of HDSL becomes noticeable where the magnetic field exceeds certain critical value Bcr, Let us briefly
remind the physical reason for this. In the so-called Conventional Theory (CT) of the Stark broadening of HDSL
(which is frequently referred to as Griem’s theory – as presented in Kepple-Griem paper [2] and in Griem’s book
[3]) the electron impact broadening operator �ab (where a and b label, respectively, the upper and lower states
involved in the radiative transition) is a linear function of the following integral over impact parameters:

0

/ .d (3)

This integral diverges both at large and small �, so that in the CT the integration got truncated by some �min at
the lower limit and by some �max at the upper limit. The lower limit �min is chosen such as to preserve the unitarity of
S-matrices involved in the calculation and is then called Weisskopf radius �We (discussed in more detail below). At
the absence of the magnetic field, the upper limit �max is chosen from the requirement that the characteristic frequency
v/� of the variation of the electric field of the perturbing ion should exceed the plasma electron frequency �pe

according to the general plasma property to screen electric fields at frequencies lower than �pe. So, it is chosen �max
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= v/�pe, which after substituting the perturbing electron velocity v by the mean thermal velocity vT becomes the
Debye radius �D.

The uniform magnetic field B reduces the spherical symmetry of the problem to the axial symmetry. The
fundamental consequence is that in this situation the electron broadening operator �ab (and the corresponding Stark
width) should be subdivided into two distinct parts: the adiabatic part �ad,ab and the nonadiabatic part �na,ab. The
adiabatic part is controlled by the component of the electric field (of the perturbing electron) parallel to B, while the
nonadiabatic part is controlled by the component of the electric field (of the perturbing electron) perpendicular to B.

Physically the nonadiabatic contribution to the broadening is due to the virtual transitions between the adjacent
Zeeman sublevel separated by ��B = �B/2. For the nonadiabatic contribution to be effective, the characteristic
frequency v/� of the variation of the electric field of the perturbing ion should exceed ��B. This leads to the
modified upper cutoff for the integral (3):

�max = min(v/�pe, v/��B) = min(v/�pe, 2v/�B), (4)

which becomes smaller than v/�pe when

��B = �B/2 > �pe. (5)

or

B > Bthreshold = 4c(meNe)
1/2,     Bthreshold(Tesla) = 3.62x10-7[Ne(cm-3)]1/2, (6)

where Ne is the electron density. Obviously, the greater the ratio B/Bcr, the smaller the nonadiabatic contribution to
the width becomes. Such inhibition of the nonadiabatic contribution to the width was studied in detail in paper [4]
– see also Sect. 4 of review [5].

In distinction, the adiabatic contribution to the width is not affected by the fulfilment of condition (5) or (6).
Physically this is because the adiabatic contribution is not related to the quantum effect of the virtual transitions
between the adjacent Zeeman sublevels. Rather, the physics behind the adiabatic contribution is the phase modulation
of the atomic oscillator by the parallel to B component of the electric field of the perturbing electron (the phase
modulation being, in essence, a classical effect – see. e.g., review [6].

Thus, it is clear that as B/Bthreshold becomes much greater than unity, practically the entire width becomes due to
the adiabatic contribution. This happens when �max = v/��B diminishes to the value significantly below �min = �We,
i.e., when ��B > v/�We, which after substituting v by vT = (2Te/me)

1/2, Te being the electron temperature, becomes

��B > �We = vT/�We, (7)

where �We is called the Weiskopf frequency, or

B > Bcr = 2mecvT/(e�We). (8)

The focus of the present paper is at very strong magnetic fields satisfying the condition (8), which will be
reformulated more explicitly below. In this situation, the effect of helical trajectories of the perturbing electrons can
be presented in the purest form – without the interplay with the magnetic-field-caused inhibition of the nonadiabatic
contribution studied in paper [4].

For the purpose of the comparison, let us first calculate the adiabatic contribution for rectilinear trajectories of
perturbing electrons in the case of a vanishingly small magnetic field B – in the spirit of the CT, but slightly more
accurately. By using the parabolic coordinates with the z-axis along B, the adiabatic part (�ad ,rec)ab of the electron
broadening operator can be represented in the form (the suffix “rec” stands for “rectilinear trajectories”)

max

min

( v)
2 2 2 2

ad,rec ab e e a b a b 0 vel

(v)

( ) [2 N /(3m )][(Z Z )(Z Z ) / a ]2 v(1/ 2 d / ) / v ,� (9)
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where <…>vel stands for averaging over the distribution of velocities of perturbing electrons and 1/2 stands for the
contribution of the so-called strong collisions (i.e., the collisions with the impact parameters � < �min(v). In Eq. (9),
Z is the operator of the z-projection of the radius-vector of the atomic electron. In the parabolic coordinates, this
operator has only diagonal matrix elements in the manifold of the fixed principal quantum number n, so that the
operator (�ad ,rec)ab also has only diagonal matrix elements, which we denote ��(�ad,rec)��. Here � and � correspond,
respectively, to upper and lower sublevels of the levels a and b involved in the radiative transition.

Then the adiabatic width ���,rec = – Re[��(�ad ,rec)��] can be expressed as follows

���max(v)

���,rec = [3�2NeX��
2/(2me

2)]2� <v [(1/2 + � d�/�)/v2]>vel, (10)
���min(v)

where

X�� = naq� – nbq�,    q� = (n1 – n2)�,  q� = (n1 – n2)�, (11)

where n1 and n2 are the parabolic quantum numbers (while q is often called the electric quantum number). We note
that ���,rec is the half-width at half maximum of the corresponding component of the line. We also note that X�� is the
standard label of Stark components of HDSL, but for avoiding any confusion we emphasize that in the present
paper we consider the Zeeman triplet of HDSL, consisting of the central (unshifted) �-component and two
�-components symmetrically shifted to the red and blue parts of the line profile.

For the adiabatic width we have �max(v) = v/�pe, as explained above. As for �min(v), its role is played by the
adiabatic Weisskopf radius

�Wad(v) = kad/v,     kad = 3|X��|�/me. (12)

The adiabatic Weisskopf radius arises naturally without any uncertainty as a result of the exact calculation of
the adiabatic Stark width in paper [7]. This is the primary distinction of the adiabatic Weisskopf radius from the
Weisskopf radius �WG in Griem’s theory. In the latter it was chosen from the requirement to preserve the unitarity of
the S-matrices entering the calculation:

|1 – Sa(�, v) Sb*(�, v)| � 2, (13)

where the symbol * stands for the complex conjugation.

Therefore, the choice of �WG in Griem’s theory

�WG(v) = kG/v,           kG = �(na
2 – nb

2)/me (14)

has an inherent uncertainty by a factor of 2 (for the detailed discussion of this uncertainty see, e.g., paper [8] or
Appendix B from book [9]). Below, while calculating the velocity average in Eq. (9), we will use

�min(v) = �W(v) = k/v, (15)

where k would be either kad from Eq. (11) or kG from Eq. (13), so that for the ratio �max(v)/�min(v) we have

�max(v)/�min(v) = v2/(k�pe). (16)

Then the result of the integration over the impact parameters in Eq. (10) can be expressed as follows

ln[(v2/vT
2)/D],          D = k�pe/vT

2. (17)

While using k = kad defined in Eq. (12), the dimensionless constant D becomes

D = 3|X��|��pe/(mevT
2) = 3|X��|��pe/(2Te) = 5.57x10–11|X��|[Ne(cm-3)]1/2/Te(eV). (18)

At this point we calculate the velocity average in Eq. (10) by employing the three-dimensional isotropic Maxwell
distribution f3(p)dp = (4/�1/2)p2exp(–p2), where p = v/vT:
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<{ln[(v2/vT
2)/D] + 1/2}/v] >vel = (2/�1/2)[ln(1/D) +1/2 – �] = (2/�1/2)[ln(1/D) – 0.0772], (19)

where � = 0.5772 is the Euler constant. So, finally the adiabatic width in the case of rectilinear trajectories becomes:

���,rec = [6�1/2�2X��
2Ne/(me

2 vT)] [ln(1/D) – 0.0772],   vT = (2Te/me)
1/2, (20)

where D was defined in Eq. (18).

Now we start calculating the adiabatic width ���,hel for the case of the actual trajectories (i.e., helical trajectories)
of perturbing electrons, the suffix “hel” standing for “helical trajectories”. Again we consider strong magnetic
fields satisfying the condition (8). By using the explicit expression (12) for the adiabatic Weisskopf radius and
substituting v by vT, the condition (8) can be reformulated more explicitly as follows

B > Bcr,      Bcr = 2Te/(3|X��|e�c) or Bcr(Tesla) = 9.2x102Te(eV)/|X��| Tesla, (21)

where �c = �/(mec) = 2.426x10–10 cm is the Compton wavelength of electrons.

Such strong magnetic fields are encountered, for example, in plasmas of DA white dwarfs (i.e., white dwarfs
emitting hydrogen lines). According to observations, the magnetic field in plasmas of white dwarfs can range from
103 Tesla to 105 Tesla (see, e.g., papers [10, 11]), thus easily exceeding the critical value from Eq. (21) – given that
Te ~ 1 eV in the white dwarfs plasmas emitting hydrogen lines.

For completeness it should be mentioned that we consider the situation where the temperature Ta of the radiating
atoms satisfies the condition

Ta << (11.12 keV/n)(M/MH)2, (22)

where M is the mass of the radiating atom, MH is the mass of hydrogen atoms, and n is the principal quantum
number of the energy level, from which the spectral line originates. Under this condition, the Lorentz field effects
can be disregarded compared to the “pure” magnetic field effects.

It should be also noted that at any value of the magnetic field (no matter how large or small), the Stark width of
the central (unshifted) component of the Ly-alpha Zeeman triplet has practically only the adiabatic contribution –
because the non-adiabatic contribution vanishes within the accuracy of about 1%, as shown in detail in paper [4].
So, the experimental/observational studies, for which the effect of helical trajectories of perturbing electrons
on the Stark width might be significant, are not limited by white dwarfs, but can be performed in a variety of
laboratory and astrophysical plasmas emitting the hydrogen or deuterium Ly-alpha line (by using the polarization
analysis).

Based on Eq. (1), the z-component (i.e., the component parallel to B) of the electric field of the perturbing
electron at the location of the radiating atom can be represented in the form

Ez(t) = e(vzt)/[�
2+vz

2t2+vp
2/�B

2+2(�vp/�B) cos(�Bt+�)]3/2, (23)

For comparison, in the case of the rectilinear trajectories for vanishingly small B it was

Ez,rec(t) = e( ez+ vezt)/(�
2+v2t2)3/2, (24)

where ez is the unit vector along the z-axis. Here and below, for any two vectors a and b, the notation ab stands for
their scalar product (also known as the dot-product). It should be noted that Eq. (23) in the limit of B = 0 does not
reduce to Eq. (24). This is because Eq. (23) adequately describes the situation only for the strong magnetic fields
defined by the condition

(vp/�B)2 << [�Wad(vz)]
2. (25)

It can be reformulated as

[me/(3X��e�cB)]2vp
2vz

2 << 1, (26)
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which after substituting vp
2 by its average value over the two dimensional Maxwell distribution <vp

2> = vT
2 and vz

2

by its average value over the one dimensional Maxwell distribution <vz
2> = vT

2/2, can be rewritten as

B >> Bmin = 21/2mevT
2/(6|X��|e�c) = 21/2Te/(3|X��|e�c) or Bmin(Tesla) = 6.5x102Te(eV)/|X��|. (27)

This condition is similar to the condition (8) or (21), under which practically the entire width of HDSL becomes
due to the adiabatic contribution only.

The starting formula for the adiabatic width in the case of helical trajectories of perturbing electrons ���,hel = –
Re[��(�ad ,hel)��] (the suffix “hel” stands for “helical trajectories”)

2 2 1/ 2
,hel z 1 z p 1 p z p z p

0

N dv f (v ) dv f (v )(v v ) (v , v ), (28)

where the operator �(vz, vp), which is physically the cross-section of the so-called optical collisions responsible for
the broadening of the spectral line, has the form:

*
z p a z p b z p

0

(v ,v ) d 2 [1 S ( ,v ,v )S ( ,v , v )] . (29)

Here f1(v) and f2(v) are the 1D- and 2D-Maxwell distributions, respectively; Sa and Sb are the corresponding
scattering matrices; the symbol […]� stands for the average over the phase � entering Eq. (23). In the spirit of the
CT, one gets

t
* 2

a z p b z p e z 1 z 11 S ( ,v ,v )S ( ,v , v ) [3X /(2m e)] dt E (t) dt E (t ),� (30)

where Ez(t) is given by Eq. (23).

It is important to emphasize the following. The double integral in Eq. (30 vanishes for the odd part of Ez(t),

while for the even part of Ez(t) it is equal to the one half of the square of dt Ez(t) – see Appendix A. Therefore it

is sufficient to calculate the double integral just for the even part of Ez(t), i.e., for

Ez(t)even = [Ez(t) – Ez(–t)]/2. (31)

Before doing this, we break the integration over the impart parameters in Eq. (29) into the following two parts

�(vz, vp) = �1(vz, vp) + �2(vz, vp), (32)

where

0

*
1 z p a z p b z p(v , v ) d 2 [1 S ( ,v ,v )S ( ,v , v )] , (33)

�2(vz, vp) = 
0

0

d� 2�� [1 – Sa(�, vz, vp) Sb*(�, vz, vp)]�. (34)

Here

�0 = vp /��B. (35)
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While expanding Ez(t)even from Eq. (31) in terms of the small parameter �0/� = vp/(�B�) and keeping the first
non-vanishing term of the expansion, we obtain

Ez(t)even = (sin �) (3e�vpvz/�B)  t[sin(�Bt)]/(�2 + vz
2t2)5/2. (36)

Then

dt Ez(t)even 
t

dt1 Ez(t1)even = (1/2)[ dt Ez(t)]
2 = (sin2 �)(2e2�B

2vp
2/vz

6) [K1(�B�/|vz|)]
2, (37)

where K1(s) is the modified Bessel function of the 2nd kind. After averaging over the phase � in Eq. (37), we get

[1 – Sa(�, vz, vp) Sb*(�, vz, vp)]� = [3X����/(2me)]
2 (�B

2vp
2/vz

6) [K1(�B�/|vz|)]
2. (38)

After substituting the expression (38) into Eq. (33) and integrating over the impact parameters, we obtain

�1(vz, vp) = (9�3/2/8) (X���/me)
2(vp

2/vz
4) MeijerG[{{},{3/2}},{{0,0,2},{}}, vp

2/vz
2], (39)

where MeijerG[…] is the Meijer G-function.

Now we proceed to calculating �2(vz, vp) defined by Eq. (34). While expanding Ez(t)even from Eq. (31) in terms
of the small parameter �/�0 = �B�/vp and keeping the first non-vanishing term of the expansion, we obtain

Ez(t)even = (sin �) (3e�vpvz/�B) t[sin(�Bt)]/(vp
2/�B

2 + vz
2t2)5/2. (40)

Then

dt Ez(t)even 
t

dt1 Ez(t1)even = (1/2)[ dt Ez(t)]
2 = (sin2 �)(2e2�2�B

4/vz
6){K1[(vp

2/vz
2)1/2 ]}2. (41)

After averaging over the phase � in Eq. (41), we get

[1 – Sa(�, vz, vp) Sb*(�, vz, vp)]� = [3X���/(2me)]
2 (�B

4�2/vz
6){K1[(vp

2/vz
2)1/2 ]}2. (42)

After substituting the expression (42) into Eq. (34) and integrating over the impact parameters, we obtain

�2(vz, vp) = (9�/8) (X���/me)
2(vp

4/vz
6) {K1[(vp

2/vz
2)1/2 ]}2. (43)

By combining Eqs. (39) and (43), we get:

�(vz, vp) = �1(vz, vp) + �2(vz, vp) =

(9�/8) (X���/me)
2 (vp

2/vz
4){�1/2MeijerG[{{},{3/2}},{{0,0,2},{}}, vp

2/vz
2] + (vp/vz)

2K1[(vp
2/vz

2)1/2 ]2}. (44)

According to Eq. (28), the adiabatic width in the case of helical trajectories of perturbing electrons is

���,hel = Ne <(vz
2 + vp

2)1/2 �(vz, vp)>veloc, (45)

where <…>veloc stands for the average over velocities vp and vz. In order to get the message across in a relatively
uncomplicated form, we simply substitute vp

2 by its average value over the two dimensional Maxwell distribution
<vp

2> = vT
2 and vz

2 by its average value over the one dimensional Maxwell distribution <vz
2> = vT

2/2. As a result, we
obtain the final expression:

���,hel = 7.9(X����/me)
2Ne/vT or ���,hel(s

–1) = 1.8x10–7 X��
2[Ne(cm-3)]/[Te(eV)]1/2, vT = (2Te/me)

1/2. (46)

It should be noted that ���,hel does not depend on the magnetic field in the case where the magnetic field is strong
enough to satisfy the condition (27).

The role of the allowance for helical trajectories of perturbing electrons can be best understood by considering
the ratio of ���,hel from Eq. (46) to ���,rec from Eq. (20):
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ratio = ���,hel/���,hel = 0.74/[ln(1/D) – 0.0772]. (47)

Figure 1 shows this ratio versus the dimensionless parameter D, which is defined by Eq. (18) and which is
physically the ratio �Wad(vT) /��D. It is seen that for D < 0.44, the allowance for helical trajectories of perturbing
electrons decreases the adiabatic width, while for D > 0.44, the allowance for helical trajectories of perturbing
electrons increases the adiabatic width. The fact that, the allowance for helical trajectories of perturbing electrons
could lead to two different outcomes (i.e., to either decreasing or increasing the adiabatic width of HDSL) is a
counterintuitive result.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
D

1

2

3

4

5

6
width ratio

Figure 1: The ratio of adiabatic widths 
,hel

/
,hel

 versus the dimensionless parameter D, which is defined by Eq. (18)
and which is physically the ratio 

Wad
(v

T
)/

D
 (solid curve). The dashed horizontal line is there for better

visualizing the two regions: 
,hel

/
,hel

 < 1 and 
,hel

/
,hel

 > 1.

Figures 2 shows the ratio ���,hel/���,hel from Eq. (47) versus the electron density Ne for the range of Ne relevant to
the DA white dwarfs at Te = 1 eV. The lower curve is for the Lyman-alpha line, for which the adiabatic width is non-
zero only for the two �-components of |X��| = 2. The upper curve is for the Balmer-beta line – specifically for its two
intense �-components of |X��| = 10.

Figure 3 shows more clearly the ratio ���,hel/���,hel for the electron densities below 2x1017 cm-3 for the Lyman-
alpha line (the lower curve) and for the two intense �-components of |X��| = 10 of the Balmer-beta line (the middle
curve). The upper curve shows the ratio ���,hel/���,hel for the two most intense �-components of |X��| = 28 of the
Balmer-delta line.

We also present below explicit practical formulas for the adiabatic width (with the allowance for helical
trajectories of perturbing electrons in the case of strong magnetic fields satisfying the condition (27)) in the wavelength
scale for the following five HDSL – namely, the Full Width at Half Maximum (FWHM) ��1/2,ad.

For Lyman-alpha:
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Figure 2. The ratio 
,hel

/
,hel

 from Eq. (47) versus the electron density N
e
 for the range of N

e
 relevant to the DA white

dwarfs at T
e
 = 1 eV. The lower curve is for the Lyman-alpha line. The upper curve is for the

Balmer-beta line – specifically for its two intense -components of |X | = 10.

Figure 3: The ratio 
,hel

/
,hel

 for the electron densities below 2x1017 cm-3 for the Lyman-alpha line (the lower curve) and for the
two intense -components of |X | = 10 of the Balmer-beta line (the middle curve). The upper curve shows the ratio

,hel
/

,hel
 for the two most intense -components of |X | = 28 of the Balmer-delta line.
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��1/2,ad(nm) = 1.1x10–20 Ne(cm-3) / [Te(eV)]1/2. (48)

For Balmer-alpha line components:

��1/2,ad(nm) = 8.1x10–20 X��
2Ne(cm-3)/[Te(eV)]1/2. (49)

For Balmer-beta line components:

��1/2,ad(nm) = 4.5x10–20 X��
2Ne(cm-3) / [Te(eV)]1/2. (50)

For Balmer-gamma line components:

��1/2,ad(nm) = 3.7x10–20 X��
2Ne(cm-3)/[Te(eV)]1/2. (51)

For Balmer-delta line components:

��1/2,ad(nm) = 3.2x10–20 X��
2Ne(cm-3)/[Te(eV)]1/2. (52)

We remind that X�� is the combination of the parabolic quantum numbers defined in Eq. (11).

Finally, we note that under the condition (21), the Stark profile of the entire HDSL is simply the sum of Lorentzians
corresponding to each Stark component

S(��) = � j�� L��(��),

L��(��) = 
0

dF W(F)(1/�) ���/[���
2 + (�� – C��F)2],   ��� = ���,hel + ���,nat, C�� = 3X���/(2mee). (53)

Here j�� is the relative intensity of the Stark component labeled “��”, W(F) is the distribution of the quasistatic
field F, ���,nat is the natural (radiative) width of the particular Stark component. The summation is over both �- and
�-components, but for the latter ���,hel = 0.

3. CONCLUSIONS

We considered the effect of helical trajectories of perturbing electrons on the width of HDSL for the case of strong
magnetic fields, such that the non-adiabatic Stark width practically vanishes and only the adiabatic Stark width
remains. Such strong magnetic fields encountered, e.g., in white dwarfs. We calculated analytically the adiabatic
Stark width for this case and its ratio to the adiabatic Stark width for the rectilinear trajectories of perturbing
electrons. We demonstrated that the adiabatic Stark width calculated with the allowance for helical trajectories of
perturbing electrons does not depend on the magnetic field for the case of strong magnetic fields under consideration.

We showed that, depending on the particular HDSL and on plasma parameters, the adiabatic Stark width,
calculated with the allowance for helical trajectories of perturbing electrons, can be either by orders of magnitude
smaller, or of the same order, or several times higher than the adiabatic Stark width, calculated for rectilinear
trajectories of perturbing electrons. Such a variety of outcomes is a counterintuitive result. We also demonstrated
that for the range of plasma parameters typical for DA white dwarfs (i.e, for white dwarfs emitting hydrogen lines),
the neglect for the actual, helical trajectories of perturbing electrons can lead to:

– the overestimation of the Stark width by up to one order of magnitude for the alpha- and beta-lines of the
Lyman and Balmer series;

– the underestimation of the Stark width by several times for the delta- and higher-lines of the Balmer series.

Therefore, our results should motivate astrophysicists for a very significant revision of all existing calculations
of the broadening of hydrogen lines in DA white dwarfs.

The last but not least: at any value of the magnetic field (no matter how large or small), the Stark width of the
central (unshifted) component of the Ly-alpha Zeeman triplet has practically only the adiabatic contribution, as
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shown in detail in paper [4]. So, the experimental/observational studies, for which the effect of helical trajectories
of perturbing electrons on the Stark width might be significant, are not limited by white dwarfs, but can be performed
in a variety of laboratory and astrophysical plasmas emitting the hydrogen or deuterium Ly-alpha line (by using the
polarization analysis).

Appendix A. Proof of the symmetry properties of the double integral in Eq. (30)

We consider the following two double integrals:

t

I 1I dt g(t) dt g(t ), (A.1)

I 1
t

J dt g(t) dt g(t ), (A.2)

Obviously

2

I J dt g(t) . (A.3)

If the function g(t) is even, so that g(–t) = g(t), then after substituting u = –t, the integral J becomes

1 1
u

J du g(u) dt g(t ). (A.4)

After further substituting w = –t1, the integral J finally yields

J du g(u) dw g(w) I, (A.5)

so that

2I (I J) / 2 (1/ 2)[ dt g(t)] . (A.6)

If the function g(t) is odd, so that g(–t) = –g(t), then after substituting u = –t and the subsequent substation
w = –t, we would still get

2I (I J) / 2 (1/ 2)[ dt g(t)] . (A.7)

However, for the odd function g(t), the integral in the right side of Eq. (A.7) is zero.
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