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Abstract
The VMEC1 non-axisymmetric MHD equilibrium code can compute free-boundary 
equilibria2. Since VMEC assumes that magnetic fields within the plasma form closed 
and nested flux surfaces, the plasma-vacuum interface is a flux surface, and the total 
magnetic field there has no normal component. VMEC imposes this condition of zero 
normal field using the potential formulation of Merkel3, and solves a Neumann 
problem for the magnetic potential in the exterior region.
This boundary condition necessarily admits the possibility of a surface current on the 
plasma-vacuum interface. While this current may be small in MHD equilibrium, this 
current may be readily computed in terms of a magnetic potential in both the interior 
and exterior regions. Examples of the surface current for VMEC equilibria will be 
shown. 
1 Hirshman S P and Whitson J, Phys. Fluids 26 3553 (1983)
2 Hirshman S P, Van Rij W I and Merkel P, Comp. Phys. Comm. 43 143–55 (1986)
3 Merkel P, J.  Comp. Phys. 66 83–98 (1986)
This material is based upon work supported by Auburn University and the U.S. 
Department of Energy, Office of Science, Office of Fusion Energy Sciences under 
Award Number DE-FG02-03ER54692. 
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• General result for an arbitrary vector field b

• Details in “The virtual-casing principle and Helmholtz’s theorem”
– J.D. Hanson, Plasma Phys. and Control. Fusion 57 115006 (2015)

• Previous derivation for a divergence-free field
– “Decoupling in the problem of tokamak plasma response to asymmetric magnetic 

perturbations”
V.D. Pustovitov, Plasma Phys. and Control. Fusion 50 105001 (2008)

Preface - Virtual Casing Principle
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• Consider the plasma region D, its boundary       and the coil region Dc

– The boundary       is the VMEC s = 1 surface.

• Label magnetic fields by the region where the current is non-zero
– - has nonzero curl only in D, zero curl elsewhere
– - has nonzero curl only in Dc, zero curl elsewhere
– - has nonzero curl only in       , zero curl elsewhere. (Surface current on s = 1)

• Total magnetic field – Biot-Savart integral over all space

• VMEC computes the total magnetic field in the plasma region

Free-Boundary VMEC fields
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• Define the Virtual Casing VMEC field corresponding to any magnetic 
field

• The virtual casing principle tells us that

and

• If one is not aware of the possibility of Bsurf, then it appears that there 
are two ways to compute Bcoil in the plasma region D:

– A Biot-Savart integration over the external coils
– A Virtual Casing surface integration over the plasma boundary

• Geiger et al. [Contrib. Plasma Phys. 50 770 (2010)] add a “correction” 
to the VMEC field in region D

Free-Boundary VMEC fields (2)
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• Puncture plots of this corrected field show magnetic islands in the 
plasma region. [Geiger et al., Poster at ISHW Padua (2013)]

• Conclusion – In some cases, there are non-trivial surface current on 
VMEC’s plasma-vacuum interface

• How can we compute this surface current?
Answer: Careful consideration of 

solutions to the interior and exterior Neumann 
problems

Free-Boundary VMEC fields (3)
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• Define the magnetic field with volume sources in D and Dc

• There is no particular reason to expect that this field will be parallel to 
the surface of D

• Define a source-free potential       in the region D

• Green’s Theorem applied to the region D becomes

Neumann Boundary Value Problem
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• The interior Neumann problem is then

• With some clever insight into computing the singular integral on the 
left-hand side [Merkel 1986 J. Comp. Phys. 66 83–98], this can be 
solved for         on the plasma surface

• Then in the plasma region D, Green’s Theorem gives

• And in the coil region Green’s Theorem gives

Neumann Boundary Value Problem (2)
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• Similar to the internal potential, we can define an external potential

• The exterior Neumann problem is then

The interior (exterior) Neumann problem has a leading +(-) sign on the potential!
• Similarly, in the coil region

• And in the plasma region

Neumann Boundary Value Problem (3)

APS-DPP San Jose Page 9

Φext (r) =
1
4π

(n̂ '⋅B0 )
1
r− r '

+Φext n̂ ' ⋅
r− r '
r− r ' 3

d 2r '
∂D!∫ r ∈ Dc

0 = 1
4π

(n̂ '⋅B0 )
1
r− r '

+Φext n̂ ' ⋅
r− r '
r− r ' 3

d 2r '
∂D!∫ r ∈ D

∇2Φext = 0 r ∈ Dc (B0 (r)+∇Φext ) ⋅ (−n̂) = 0 r ∈∂D

−Φext +
1
2π

Φext n̂ ' ⋅
r− r '
r− r ' 3

d 2r '
∂D!∫ =

1
2π

(−n̂ '⋅B0 )
1
r− r '

d 2r '
∂D!∫ r ∈∂D



1 November 2016

• Combining terms from both the interior and exterior problems, the 
source term can be eliminated to obtain

• Taking the gradient of these two equations, with some significant 
manipulation of the integrand, we can obtain

• Bsurf is defined in both the coil and plasma regions
• It’s definition is a Biot-Savart surface integral over the plasma surface, 

with surface current density

Neumann Boundary Value Problem (4)
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• The magnetic field due to surface currents can be written in terms of a 
vector potential

• Things to note about this process
– If the field B0 is already tangent to the surface, the source term in 

the Neumann problem is zero. The solution to both the interior and 
exterior problems are constants, and the surface current is zero.

– Once the exterior potential is computed, the extra work to compute 
the interior potential is just another linear equation solution. Most of 
the computational work is in setting up the surface geometry for 
approximating the singular surface integral.

Neumann Boundary Value Problem (5)
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• For free-boundary computations, VMEC changes the shape of the 
surface of D in order to ensure that                      is continuous across 
the plasma-vacuum interface.

• The vacuum field (evaluated just outside the plasma)

is decomposed as
• Bcoil is computed from the MGRID file
• Bplasma is approximated from the VMEC equilibrium
• is the exterior solution to the Neumann problem, described above
• The magnetic field just inside the plasma is the VMEC field.
• Note – VMEC does NOT compute the interior solution to the 

Neumann problem

What does VMEC compute?

APS-DPP San Jose Page 12

Bvac ≡ lim
ε→0+
B(r+εn̂) r ∈∂D, ε > 0

B2 / 2µ0 + p

Bvac ≡ Bcoil +Bplasma +∇Φext

Φext



1 November 2016

1. Modify the VMEC code to also compute the interior solution. Then 

1. Use the already computed vacuum field (just outside the plasma) and 
the VMEC field just inside the plasma to compute

or

evaluated appropriately.

• Will these two methods agree? How large are the surface currents?

Two ways to get the surface current in VMEC
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• At this time VMEC only computes the external potential       . Modify 
VMEC so that it also computes the internal potential       .

• Modify VMEC to compute the surface current Ksurf using the two 
method mentioned above.

• Consider as a test case a vacuum magnetic field with significant 
magnetic islands in the outer portion of the plasma
– One would expect significant surface currents in this case

• Look at how Ksurf varies as the outermost flux surface is moved through 
the island region

• Look at how Ksurf varies as VMEC’s radial resolution is increased.

Future Work
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