
Compact Toroidal 
Hybrid (CTH)

 

Parameter Range
R0 0.75 m

avessel 0.29 m
aplasma ≤ 0.20 m

Ip ≤ 80 kA
|B | ≤ 0.7 T
ɩvac 0.02 to 0.32
Te ≤ 200 eV
ne ≤ 5 × 1019 m-3

PECRH ≤ 30 kW

•	CTH is a stellarator/tokamak hybrid device with an array of mag-
netic coils (helical, toroidal, poloidal, ohmic) providing access to a 
broad range of magnetic configurations

•	A primary objective of the CTH program is to investigate the plas-
ma stability when applying significant 3D magnetic shaping to cur-
rent-carrying plasmas

•	Measurements of ion parameters in both the edge and the core of 
CTH plasmas beneficial for island divertor and MHD mode-locking 
experiments

•	Reversed F-mount lenses used collect emission from a wide an-
gle and pass it through the polarization interferometer parallel. 
Image of first collection lens placed at detector plane the second 
lens.

Upgrades
•	A number of upgrades completed 
to the instrument & set up to improve 
measurements

•	New toroidal viewport installed on 
the midplane (~7.75” clear aperture) 
to be shared w/ Thomson Scattering

•	New support structure allows for 
in situ calibrations using a flip 
mirror to view the integrating 
sphere and lead shielding of x-rays

•	Entire instrument now housed in a marine cooler to further reduce 
temperature fluctuations of the interferometer crystal

•	Peltier cooler mounted onto the cooler to feedback control the 
ambient temperature (~23 °C ) inside the cooler

•	Result of two temperature control systems is constant crystal tem-
perature to better than ~0.01 °C

Measurements
		  Raw Data		     Demodulated Intensity   Measured Velocity

•	 Initially, mostly uniform toroidal flow (10 to 14 km/s) followed by 
slow down of flow near the edge

•	Analysis completed by N. R. Allen

Coherence Imaging 
Spectroscopy (CIS)

Abstract
 

Measurements of impurity ion emissivity and velocity in the Compact Toroidal 
Hybrid (CTH) experiment are achieved with a new optical coherence imaging di-
agnostic. The Coherence Imaging Spectroscopy (CIS) technique measures the 
spectral coherence of an emission line using an imaging interferometer of fixed 
delay[1]. CIS has a number of advantages when compared to dispersive Doppler 
spectroscopy, including higher throughput and the capability to provide 2D spec-
tral images, making it ideal for investigating the non-axisymmetric geometry of 
CTH plasmas. Furthermore, detailed measurements of the ion flow structure pro-
vided by CIS combined with predictive computational models could also provide 
spatially resolved images of complex flow structures, such as those associated 
with an island divertor [2, 3]. Initial CIS measurements of CTH plasmas reveal 
strong signals for C III (465 nm), He II (468 nm) and C II (513 nm) emission. Pre-
liminary analysis of C III interferograms indicates a net toroidal flow on the order 
of 10 km/s during the time of peak current. Additionally, bench tests using Zn and 
Cd light sources reveal that the temperature of the interferometer optical compo-
nents must be actively controlled to within 0.01°C to limit phase drift of the inter-
ferogram resulting in artificially measured flow. Results from this diagnostic will 
aid in characterizing the ion flow in planned MHD mode-locking experiments.
A new collaboration has been established between Auburn University and the 
Max-Planck-Institute for Plasma Physics to construct and optimize two new co-
herence imaging instruments for installation on the W7-X experiment. The two 
instruments will measure ion impurity flows in both the toroidal and poloidal di-
rections to investigate the physics of the W7-X island divertor beginning during 
OP1.2. A continuous wave laser tunable over most of the visible region will be 
incorporated to provide immediate and accurate calibrations of both CIS systems 
during plasma operations.
 

CIS Purpose
• Accurate measurement of fringe pattern parameters provides in-
formation about spectral emission (Doppler broadening & shift)

Advantages of CIS Compared to Dispersive 
Spectroscopy
• High-throughput due to no requirements of apertures or slits

• Possible to capture an entire two-dimensional image of emission 
and extract spectral information at each point in the image

=> Important for fully 3D plasma geometries such as CTH & W7-X

• Possible extension to measure the spectral components of Zee-
man splitting potentially yielding line-integrated magnitude and ori-
entation of the magnetic field

Optical Schematic

Collection Lens: collimates plasma emission from a wide angle into 
the diagnostic

Band-Pass Filter: selects a particular spectral line corresponding to 
an ion charge state of interest

Linear Polarizer: assures that transmitted emission is equally com-
prised of orthogonal polarizations (needed for maximum fringe con-
trast of interferogram)

Delay Plate: delays components of emission with orthogonal polar-
izations relative to each other (birefringence) on the order of ~1000 
wavelengths (needed to provided sufficient measurement sensitivi-
ty)

Savart Plate: composite of two birefringent plates with optical axes 
oriented 90° to each other. Effect is to slightly delay orthogonal po-
larizations of emission relative to each other as a function of inci-
dent angle (relative to the Savart plate). Therefore, emission from 
different vertical locations in the plasma have slightly different de-
lays between orthogonally polarized components.

Final Polarizer: detects total relative phase shift between the or-
thogonally polarized emission components (a rotation of the total 
polarization vector) due to both crystals (delay plate plus Savart 
plate).

	 => Produces horizontal fringe pattern

Second Lens: focuses transmitted emission onto the image plane

Detector: captures emission with overlaid interference pattern in 
time (fast camera)

Interpreting the Interferogram
• Doppler shift of a spectral line (velocity) observed as a change in 
the fringe spacing

• Doppler broadening of a spectral line (temperature) observed as a 
modulation of the fringe contrast

• Measured fringe pattern from plasma compared to calibrated 
fringe pattern from known light source to determine Doppler shift 
and broadening

Calibrations

• Fringe pattern produced by instrument viewing integrating sphere 
illuminated by Zn I emission at 468.0 nm

• With proper accounting, the Zn I interferogram can be translated 
to the rest wavelength of He ll emission at 468.6 nm and used as 
an absolute reference for He ll plasma measurements

Wendelstein 7-X 
•	New collaboration established between Auburn University and 

Max-Planck-Institute for Plasma Physics to construct and optimize 
two coherence imaging instruments to investigate the physics of 
the W7-X island divertor

•	Two new CIS instruments are being installed on W7-X providing 
approximately perpendicular views of the divertor target region [4]

•	Divertor target contains five nozzles for introducing impurity gases 
allowing for possible measurements of a range of impurities

•	Plasma emission collected by optics housed in an immersion tube 
& coupled to the CIS instrument by an imaging fiber bundle

•	Flexible design allows for remotely switching between spectral 
lines, rotation of interferometer relative to plasma geometry

•	Real time calibration provided by fully tunable continuous wave 
laser in combination with a wavemeter provides:

•	Zero flow reference needed for absolute flow measure-
ments

•	Frequent calibrations reduce the effects of temperature vari-
ation of the birefringent crystal

•	Calibration measurements account all for differences be-
tween crystal manufacturing and published values

•	Tunable laser scheduled to arrive at the end of OP1.2a but will 
mostly likely go into service for OP1.2b. In the meantime calibra-
tions will be conducted with a Zn lamp & He II filter.

•	 Installation of both CIS systems in the Torus Hall nearing comple-
tion with first measurements expected in the beginning of OP1.2a
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