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Terminology

Many computational problems can be formulated as
generate-and-test search problems
A search space contains the set of all possible solutions

A search space generator is complete if it can generate the entire
search space
An objective function tests the quality of a solution
A heuristic is a problem-dependent rule-of-thumb
A meta-heuristic determines the sampling order over a search space
with the goal to find a near-optimal solution (or set of solutions)
A hyper-heuristic is a meta-heuristic for a space of programs
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Algorithmic Toolbox

A Black-Box Search Algorithm (BBSA) is a meta-heuristic which
iteratively generates trial solutions employing solely the information
gained from previous trial solutions, but no explicit problem knowledge
Evolutionary Algorithms (EAs) can be described as a class of
stochastic, population-based BBSAs inspired by Evolution Theory,
Genetics, and Population Dynamics
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Evolutionary Cycle
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Genospace versus phenospace

Let F be the decoder function from G (genospace) to P (phenospace) and
x∗ be the global optimum.

F : G → P is surjective if ∀p ∈ P∃g ∈ G : F (g) = p
F : G → P is injective if ∀g1, g2 ∈ G(F (g1) = F (g2))⇒ (g1 = g2)
F : G → P is bijective if F is surjective and injective
If F is not surjective and x∗ /∈ F (G), then the EA cannot find the
global optimum. Therefore one should think twice before choosing a
non-surjective decoder function if one cannot guarantee that the
global optimum is still reachable.
F does not need to be injective, but realize there is less to search if F
is injective so there should be sufficient compensation, such as
limiting F(G) to valid solutions in a constraint satisfaction problem.
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The 0-1 Knapsack Problem

Given a set of n items with values vi and cost ci , select a subset that
maximises value while not exceeding the capacity limit Cmax .We consider
two cases:

1 fitness(p) =
∑n

i=1(vi · gi )

2 Modify fitness(p) to exclude items that would exceed Cmax

Daniel Tauritz (Auburn University) EC Lecture Slides August 27, 2021 6 / 6



The 0-1 Knapsack Problem

Given a set of n items with values vi and cost ci , select a subset that
maximises value while not exceeding the capacity limit Cmax .We consider
two cases:

1 fitness(p) =
∑n

i=1(vi · gi )
2 Modify fitness(p) to exclude items that would exceed Cmax

Daniel Tauritz (Auburn University) EC Lecture Slides August 27, 2021 6 / 6



The 0-1 Knapsack Problem

Given a set of n items with values vi and cost ci , select a subset that
maximises value while not exceeding the capacity limit Cmax .We consider
two cases:

1 fitness(p) =
∑n

i=1(vi · gi )
2 Modify fitness(p) to exclude items that would exceed Cmax

Daniel Tauritz (Auburn University) EC Lecture Slides August 27, 2021 6 / 6


