Evolutionary Computing
COMP 5660-001/6660-001/6660-D01 — Auburn University

Fall 2022 — Assignment Series 1
Automated Bridge Design

Deacon Seals
Braden Tisdale
Sean Harris
Daniel Tauritz, Ph.D.

October 3, 2022

Synopsis

The goal of this assignment set is for you to become familiarized with (I) representing problems in mathemat-
ically precise terms, (II) implementing an Evolutionary Algorithm (EA) to solve a problem, (III) conducting
scientific experiments involving EAs, (IV) statistically analyzing experimental results from stochastic algo-
rithms, and (V) writing proper technical reports. The problem you will be solving is the design of bridges
that are assessed via a physics simulation. This problem is representative of problems which require the
selection or generation of complicated solutions that optimize an objective function which may not be easily
solved with a heuristic-based approach, and where an exhaustive search is infeasible. This is a large class
of problems which comes up frequently in the real world, and EAs are one of the most commonly-used
optimizers for these problems.

These are individual assignments and plagiarism will not be tolerated. You must write your code in
Python using the provided assignment framework. You are free to use libraries/toolboxes/etc, except for
problem-specific or search/optimization/EA-specific ones. We will allow any standard Python library (e.g.,
random and json), in addition to well-known libraries for generic data processing (e.g., numpy) or visualization
(e.g., matplotlib). If you want to use something outside these categories, or anything not provided in the
base Conda Linux environment, ask a TA for permission.

Problem statement

In this assignment you will implement bridge generation using a physics simulation of moderate fidelity.
If you're familiar with bridge building games such as World of Goo or any of the games in the Bridge
Constructor franchise, you may find the problem in this assignment series to be similar. Automated design
is a hallmark application of evolutionary computing that can generate art, solve engineering tasks, and even
write code. For this assignment series, your task is to generate structurally sound bridges to support a
roadbed spanning a gap using parameterized geography, materials, and load points. You will be provided
with all the code required for the simulation of your bridges.

Your algorithm will designate a fixed number of (x, y) coordinate pairs as a solution representing a
specific bridge design. The coordinate pairs represent nodes (connection points), which are automatically
connected by frame elements (edges) if within a set distance from one another. These frame elements use
set material and cross-section characteristics specified by a problem instance. During the physics simulation,

https://en.wikipedia.org/wiki/World_of_Goo
https://en.wikipedia.org/wiki/Bridge_Constructor
https://en.wikipedia.org/wiki/Bridge_Constructor

frame elements will stretch, compress, and bend slightly under load until the forces in the bridge are at
equilibrium, allowing their structural integrity to be determined. In addition to the coordinate pairs specified
by your algorithm, there are pre-existing nodes at fixed locations that serve as the foundation of the bridge
and connection points along the roadbed.

A solution’s fitness is evaluated with a function we have provided for you. This function constructs the
bridge represented by your solution. The bridge is then tested using a physics simulation by applying an
increasingly-heavy load to points within the roadbed until the bridge fails. Elements of the bridge will fail
if their tensile, compressive, or bending stresses exceed the maximum amounts supported by their material
and geometry. The bridge is considered to have failed if any element fails. The function then returns the
force at which the bridge failed. Your algorithm’s goal is to find a solution that maximizes the value returned
by this function, in order to design the strongest bridge possible under these conditions.

It is possible that your algorithm chose coordinate pairs that do not represent a valid solution. Namely,
if your solution contains nodes at the exact location of provided nodes (those belonging to the roadbed or
support locations) or otherwise has characteristics that prevent simulation then it will be declared invalid. If
the bridge is invalid, the function will return an arbitrarily-low value to designate that the solution does not
satisfy design constraints. Nodes that are disconnected from the fixed points (e.g., a cluster of nodes floating
in the air) may, however, be ignored for some assignments to allow for the easier discovery of solutions and
for the reduction of points in the solution.

Version control requirements

For each assignment you will be given a new repository on |https://classroom.github.com]. Please view
your repository and the README.md file. It may clear things up after reading this.

Included in your repository is a script named finalize.sh, which you will use to indicate which version
of your code is the one to be graded. When you are ready to submit your final version, run the command
“chmod 755 finalize.sh && ./finalize.sh” from your repository then type in your Auburn username.
This will create a text file readyToSubmit.txt which lets us know your submission is finished. Commit and
push this file to your default branch to submit your assignment. You may commit and push as many times
as you like, but your submission will be considered finalized if readyToSubmit.txt exists in the default
branch after the due date. If you do not plan to submit before the deadline, then you should NOT run the
finalize.sh script until your final submission is ready. If you accidentally run finalize.sh before you
are ready to submit, make sure to delete readyToSubmit.txt before pushing. Similarly, if it is past the due
date and you have already pushed readyToSubmit.txt, do not make any further pushes to your repo.

After submission, your latest, pushed, commit to the default branch will be graded if it contains
readyToSubmit.txt. In order to ensure that the correct version of your code will be used for grading,
after pushing your code, examine your repo |[https://github.com| and verify that you have submitted
what you intended to. If for any reason you submit late, then please notify the TAs when you have
submitted.

Submission, penalties, documents, and bonuses

The penalty for late submission is a 5% deduction for the first 24 hour period and a 10% deduction for every
additional 24 hour period. So 1 hour late and 23 hours late both result in a 5% deduction. 25 hours late
results in a 15% deduction, etc. Not following submission guidelines can be penalized for up to 5%, which
may be in addition to regular deduction due to not following the assignment guidelines.

The code pushed to the default branch after submission will be pulled for grading. Any files created by
your assignment must be created in the present working directory or subdirectories within it. All Jupyter
notebooks must be completed and submitted with results from running the full notebook. Your submitted
code needs to execute as expected, within the base Conda Linux environment, without error. The TAs
should not have to worry about any external dependencies or environments. Grading will be based on what

https://classroom.github.com
https://github.com

can be verified to work correctly as well as on the quality of your source code. You must follow the coding
requirements as stated in the syllabus. Always remember that the TAs will thoroughly examine everything
by hand, and that your code being easy to read and understand is a substantial part of your grade (and
their sanity).

Documents are required to be in PDF format; you are encouraged (but not required) to employ
ITEX for typesetting.

Deliverable Categories

There are three deliverable categories, namely:

GREEN Required for all students in all sections.

YELLOW Required for students in the 6000-level sections, bonus for the students in the 5000-level section.
RED Bonus for all students in all sections.

Note that the max grade for the average of all assignments in Assignment Series 1, including bonus points,
is capped at 100%. That is, if you received 100%, 100%, 90%, and 120% on the individual assignments, you
will receive a 100% for Assignment Series 1.

Assignment 1a: Random Search

You must implement a random search algorithm which generates bridges by uniform random placement of
coordinates within a predefined rectangular area.

In this assignment you are asked to complete the Jupyter notebook 1a_notebook.ipynb, part of a Python
class, and a report. The notebook will guide you through implementation where you will perform the
experiments necessary to create the report. While implementing the changes listed in the notebook, think
about what data you will need to record in order to write the report described below.

Once you’ve finished the notebook, you need to write a report. This report should include a stairstep
plot showing evals vs fitness of the run which resulted in the most-fit solution. This report should also
include statistical analysis (F-test and t-test) comparing the fitness obtained by each run to the sample
data provided in your repository, and a brief discussion interpreting the results of the statistical tests. This
sample data can be found in data/mysteryAlgorithmResults.txt.

The deliverables of this assignment are:

GREEN 1 your source code and completed notebook

GREEN 2 a PDF document headed by your name, AU E-mail address, and the string “COMP x660 Fall
2022 Assignment 1a”, where z reflects the section you are enrolled in, containing your report, including
statistical analysis and plot(s)

GREEN 3 files containing any data you analyzed to write your report or generate your plot(s) should be
saved to the data directory of your repo in a format that can be easily understood by the TAs (if you
think you should include instructions on how to interpret your data, then you should!)

Submit all files via GitHub, by pushing your latest commit to the default branch, including readyToSubmit . txt.
The due date for this assignment is 10:00 PM on Sunday September 4, 2022.

Grading

The point distribution is as follows:
Assessment Rubric \ Deliverable Category ‘ Green
Algorithmic 30%
Logging and output files 15%
Programming practices, readability, and implementation | 15%
Report and plot(s) 20%
Statistical analysis 20%

Assignment 1b: Evolutionary Algorithm Search

You must implement an EA which generates bridges. This assignment will utilize the same framework that
was utilized for Assignment la, and builds on some of the code you produced in that assignment. Treating
the problem of bridge design as a black-box problem, your EA must generate bridges and use their evaluated
fitness to search for higher-fitness solutions.

In this assignment you are asked to complete the Jupyter notebook 1b_notebook. ipynb, several functions
outside the notebook which will be reused in later assignments, and a report. The notebook will guide you
through implementation of your EA, and will explain how to perform the experiments necessary to create
the report. While completing the notebook, think about what data you will need to record in order to write
the report described below.

Once you've finished the notebook, you need to write a report. This report should include an evals-
vs-fitness plot showing the progress of evolution averaged over 30 runs. This report should also include
statistical analysis (F-test and t-test) comparing the best fitness obtained by each run to data generated by
the algorithm you implemented during la, and a brief discussion interpreting the results of the statistical
tests. The report must also include every configured parameter used in your experiment.

This assignment also includes a unit testing suite provided for your benefit. The unit tests will be
called by a cell in the assignment notebook and when a unit test fails, you are expected to perform basic
troubleshooting before trying to contact a TA. The unit tests are designed so you can determine the
cause of failure and remedy it on your own. Note that, due to the stochastic nature of EAs, the unit tests
have a small chance of creating false negatives or false positives. When in doubt, run them several times
to increase your confidence in their accuracy. Passing these unit tests is part of your assignment
grade — your submission must pass all tests for full points (we will run them several times to ensure accurate
testing). You may not make any changes to the unit tests that changes their outcome (pass/fail). You may,
however, include things such as print statements in them (then run /pytest -rz to see their output), but you
must mention this in your report.

The deliverables of this assignment are:

GREEN 1 your source code and completed notebook

GREEN 2 a PDF document headed by your name, AU E-mail address, and the string “COMP x66y Fall
2022 Assignment 1b”, where z and y need to reflect the section you are enrolled in, containing your
report, including statistical analysis and plot(s)

GREEN 3 files containing any data you analyzed to write your report or generate your plot(s), in a format
that can be easily understood by the TAs (if you think you should include instructions on how to
interpret your data, then you should!)

YELLOW 1 Up to 10% (bonus points for COMP 5660 students) for an implementation of Stochastic
Universal Sampling (see Figure 5.2, page 84 in the textbook) with accompanying report and statistical
analysis comparing the impact on performance against another parent selection technique. You should
create a new config file (i.e., create config file(s) in addition to greenlb_config.txt such that each
file contains the configurations used in your comparison).

RED 1 an implementation of an extra variation (recombination or mutation) operator meaningfully differ-
ent from the prescribed method(s). What does that mean? You tell us! Any correct algorithm that
reasonably fits this definition can be submitted. Describe your design in your report and provide sta-
tistical analysis comparing performance against another recombination operator. Students can earn up
to 15% for this investigation. You should create a new config file (i.e., create config file(s) in addition
to greenlb_config.txt such that each file contains the configurations used in your comparison).

Submit all files via GitHub, by pushing your latest commit to the default branch, including readyToSub-
mit.txt. The due date for this assignment is 10:00 PM on Sunday September 18, 2022.

Grading
The point distribution is as follows:

Assessment Rubric \ Deliverable Category \ Green \ Yellow \ Red ‘
Algorithmic and attempt at parameter tuning 40% 60% 60%
Passing unit tests 15% 0% 0%
Logging and output files 5% 5% 5%
Programming practices, readability, and implementation | 10% 10% 10%
Report and plot(s) 15% 10% 10%
Statistical analysis 15% 15% 15%

Assignment 1c: Constraint Satisfaction and Multi-Objective Evo-
lution

Using the EA you created in Assignment 1b, you must implement two new EAs. The first new EA is a
constraint satisfaction EA that considers a new design constraint for allowing boats and other traffic to pass
through the bridge. The second new EA is a multi-objective EA (MOEA) that considers both the weight
your bridge can support and the total length of material needed to construct the bridge.

In this assignment you are asked to complete both of the Jupyter notebooks 1cO_notebook.ipynb and
1c1 notebook. ipynb, several functions outside the notebooks, and a report. The notebooks will guide you
through implementation of your EAs, and will explain how to perform the experiments necessary to create
the report. While completing the notebooks, think about what data you will need to record in order to write
the report described below.

Once you’ve finished the notebooks, you need to write a report. The reporting requirements for each
algorithm are different:

Constraint Satisfaction EA For each experiment, an evals-vs-raw-fitness plot showing the progress of
evolution averaged over 30 runs, statistical analysis comparing the (F-test and t-test) comparing the
best fitness obtained by each run to data generated by your EA employing both constraint satisfaction
approaches described in 1cO_notebook.ipynb, and a brief discussion interpreting the results of the
statistical tests. Note that for statistical analysis with the constraint satisfaction EA, you should use
the best raw fitness.

Multi-Objective EA For each experiment, an evals-vs-fitness plot showing the progress of evolution for
each objective averaged over 30 runs. This report should also include a plot of the best Pareto front
found in any run, where we count Pareto front P1 as better than Pareto front P2 if the proportion of
solutions in P1 which dominate at least one solution in P2 is larger than the proportion of solutions
in P2 which dominate at least one solution in P1. Visualize the bridges of the individuals within the
best Pareto front and comment on how they differ. Note: the green deliverables only require a single
MOEA experiment without statistical analysis.

The report must also include every configured parameter used in your experiment or at least a reference
to which file contains the parameters for each experiment discussed.

The same unit tests that were provided in Assignment 1b are included in your lc repository. While
failing unit tests will no longer count directly against your grade (they are not a deliverable), you will still
be penalized if any of the algorithms implemented during 1b have errors. The unit tests can supplement
your 1b feedback report in helping you resolve any remaining errors.

The deliverables of this assignment are:

GREEN 1 your source code and completed notebooks

GREEN 2 a PDF document headed by your name, AU E-mail address, and the string “COMP x66y Fall
2022 Assignment 1c¢”, where z and y need to reflect the section you are enrolled in, containing your
report, including statistical analysis and plot(s)

GREEN 3 files containing any data you analyzed to write your report or generate your plot(s), in a format
that can be easily understood by the TAs (if you think you might should include instructions on how
to interpret your data, then you should!)

YELLOW 1 Up to 10% (bonus points for COMP 5660 students) for implementing crowding as a diversity
preservation mechanism. In order to maintain compatibility with the MOEA implementation pre-
scribed within the notebook, crowding should be implemented such that a value [0,1) is added to all
individuals in a level of non-domination proportional to that individual’s crowding distance relative to
others in their non-domination level. Using a diversity metric of your choice, record the diversity of
the Pareto front from the last generation of each run and perform statistical analysis (including F-tests

and t-tests) to compare against diversity observed in your GREEN deliverables. Plot the best Pareto
front with crowding and compare with the front plotted from the GREEN deliverables to informally
identify which algorithm performed better.

RED 1 Up to 10% bonus for implementing constraint satisfaction by casting it as a multi-objective problem
that considers unpenalized fitness and negative count of constraint violations as the two maximization
objectives. Perform statistical analysis (using F-tests and t-tests) to compare performance with your
best Assignment 1c constraint satisfaction implementation using raw fitness. Report on your findings
as appropriate.

RED 2 Up to 10% bonus for implementing a repair function that modifies an individual’s genotype such
that the constraints are enforced (feel free to observe how constraint violations are checked in the
constraint_satisfaction_simulation function). Perform statistical analysis (using F-tests and t-
tests) to compare performance with your best Assignment lc constraint satisfaction implementation
using raw fitness. Report on your findings as appropriate.

RED 3 The mayor of Auburn took a recent trip to the Golden Gate Bridge and has been inspired to request
landmark-worthy bridge designs that make trade-offs between strength, required bridge material, and
height. Up to 10% bonus for implementing and experimenting with 3-objective search using weight,
negative bridge material, and bridge height. Find the best 3-objective Pareto front generated by a
30-run experiment using the criteria described earlier. Include in your report a 3D plot of this Pareto
front. Using the individuals in this Pareto front and non-domination sort, form 2-objective Pareto fronts
considering only the objectives shared with GREEN/YELLOW, respectively, and compare against the
best Pareto fronts from those deliverables through informal analysis of Pareto front plots. Include
these plots and your comparison in your report.

RED 4 We alluded in the notebook that rigorous analysis of multi-objective results is complicated! For up
to 15% bonus, perform a rigorous comparison of the two MOEA configurations of your choice (that
use the same objectives) using the hypervolume indicator metric as calculated using normalized values
for each objectives. Include in your report a detailed description of the analysis technique as well as
your results.

Submit all files via GitHub, by pushing your latest commit to the default branch, including readyToSub-
mit.txt. The due date for this assignment is 10:00 PM on Sunday October 2, 2022.

Grading

The point distribution is as follows:
Assessment Rubric \ Deliverable Category ‘ Green ‘ Yellow ‘ Red ‘
Algorithmic 45% 60% 60%
Logging and output files 5% 5% 5%
Programming practices, readability, and implementation | 20% 10% 10%
Report and plot(s) 15% 10% 10%
Statistical analysis 15% 15% 15%

Assignment 1d: Island-Model EA

Using the EA you created in assignments 1b and 1lc, you must implement an island-model EA.

In this assignment you are asked to complete the Jupyter notebook 1d_notebook.ipynb, several functions
outside the notebook, and a report. The notebook will guide you through implementation of your EA, and
will explain how to perform the experiments necessary to create the report. While completing the notebook,
think about what data you will need to record in order to write the report described below.

Once you've finished the notebook, you need to write a report. This report should include an evals-
vs-fitness plot showing the progress of evolution across all islands (e.g., calculate average and best fitness
values across all islands) averaged over 30 runs. This report should also include statistical analysis (F-test
and t-test) comparing the island topologies you implemented during this assignment, and a brief discussion
interpreting the results of the statistical tests. The report must also include every configured parameter used
in your experiment.

The deliverables of this assignment are:

GREEN 1 your source code and completed notebooks

GREEN 2 a PDF document headed by your name, AU E-mail address, and the string “COMP x66y Fall
2022 Assignment 1d”, where z and y need to reflect the section you are enrolled in, containing your
report, including statistical analysis and plot(s)

GREEN 3 files containing any data you analyzed to write your report or generate your plot(s), in a format
that can be easily understood by the TAs (if you think you might should include instructions on how
to interpret your data, then you should!)

YELLOW 1 Up to 10% (bonus points for COMP 5660 students) for implementing an island-model MOEA
using the MOEA components you implemented in Assignment lc. Fitness should be calculated by
performing non-domination sort on each island such that non-domination sort only compares individ-
uals in the same population/island. This should provide interesting island-specific fitness definitions!
Note that you should be able to reuse your island model implementation and the only modifications
required should be to your main search function defined in the notebook. Your report should include
an evals-vs-fitness plot showing the progress of evolution for each objective across all islands averaged
over 30 runs. No formal statistical analysis is required.

RED 1 Up to 10% bonus for implementing an island topology meaningfully different from the prescribed
topologies in the notebook. Experiment with your new topology using the single-objective task in the
GREEN deliverables and perform statistical analysis (using F-tests and t-tests) to compare performance
with your best configuration observed in this assignment. Report on your findings and methodology
as appropriate.

RED 2 Up to 15% bonus for implementing and experimenting with heterogeneous island configurations (i.e.,
where the islands in your topology use different parameters). Experiment using the single-objective
task in the GREEN deliverables and perform statistical analysis (using F-tests and t-tests) to compare
performance with your best configuration observed in this assignment. Report on your findings and
methodology as appropriate.

RED 3 We prescribe in the YELLOW 1 deliverable that multi-objective fitness should be calculated via
non-domination sort on each island to generate island-specific definitions of fitness. In addition to
completing YELLOW 1, for up to 10% bonus, perform an experiment where fitness is assigned by
performing non-domination sort with all individuals across all islands. Your report should include an
evals-vs-fitness plot showing the progress of evolution for each objective across all islands averaged over
30 runs. Provide an informal comparison with the per-objective measurements obtained by the best
MOEA configuration found for YELLOW 1. No formal statistical analysis is required.

Submit all files via GitHub, by pushing your latest commit to the default branch, including readyToSub-
mit.txt. The due date for this assignment is 10:00 PM on Sunday October 16, 2022.

Grading
The point distribution is as follows:

Assessment Rubric \ Deliverable Category ‘ Green ‘ Yellow ‘ Red 1 ‘ Red 2 ‘ Red 3 ‘

Algorithmic 45% 50% 50% 50% 60%
Logging and output files 5% 5% 5% 5% 5%
Programming practices, readability, and im- | 20% 20% 10% 10% 10%
plementation
Report and plot(s) 15% | 25% 15% | 15% | 25%
Statistical analysis 15% 0% 20% 20% 0%

10

References

[1] A. E. Eiben and J. E. Smith, Introduction to Evolutionary Computing. Second Edition, Springer-Verlag,
Berlin Heidelberg, 2015, ISBN 978-3-662-44873-1.

11

