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Length of bitstrings is m

Individual's chromosome: {0,1}™

Schema - a template allowing exploration of similarities among
individuals (binary strings)

A schema consists of 0's, 1's and *'s (don't care symbol)

One particular schema represents all strings (a hyperplane or subset of
the search space) which match it on all positions other than ‘*'

Every schema matches exactly 2" strings, where r is the number of *'s
Each string of length m is matched by 2 schemata

For length m there are 3™ possible schemata
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@ Length of bitstrings is m

e Individual's chromosome: {0,1}™

@ Schema - a template allowing exploration of similarities among
individuals (binary strings)

@ A schema consists of 0's, 1's and *'s (don’t care symbol)

@ One particular schema represents all strings (a hyperplane or subset of
the search space) which match it on all positions other than ‘*'

@ Every schema matches exactly 2" strings, where r is the number of *'s

@ Each string of length m is matched by 2™ schemata

@ For length m there are 3™ possible schemata

@ The order of schema S (denoted by o(S)) is the number of fixed
positions (non-don’t care positions) in S (= m —r)

o The defining length of schema S (denoted by §(S)) is the distance

between the first and the last fixed string positions (i.e., the number
of crossover points); it defines the compactness of information
contained in a schema
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@ The number of strings in a population at time t matched by schema
S is denoted by (S, t)
Fitness of individual v;: eval(v;)

The fitness of a schema at time t, eval(S, t), is defined as the average
fitness of all strings in the population matched by the schema S

Population consists of strings {vi, -+, Vpopsize }

Given p strings {vj,--- ,v;,} in population matched by schema §;,
then:

eval(S;, t) Zeva/ v, (1)

Z [_)opsize

Total fitness of population F(t) = eval(v;)

Assume generational model with fitness proportional (roulette wheel)
selection
@ Single string selection chance at time t: eval(v;)/F(t)
@ Selection chance for average string matched by schema S:
eval(S, t)/F(t)
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@ Combining the above we get:

E[E(S,t+1)] =&(S, t) - popsize - eval(S, t)/F(t) (2)
@ Average population fitness F(t) = F(t)/popsize
@ Reproductive schema growth equation:

E[E(S,t+1)] =&(S,t) - eval(S,t)/F(t) (3)

@ If schema S remains above average by €%, in other words
eval(S,t) = (1+¢€) - F(t), then we can make the following derivation
of the geometric progression equation:

E[§(S,t+1)] = &(S,t)-(1+¢)- F(1)/F(1)
§(5,t)-(1+¢)
(S, t—1)-(1+¢€)?
(S, t—i)-(1+¢t
£(5,0) - (1 4 ¢)"* (4)

Daniel Tauritz, PhD EA Theory Notes November 16, 2020 4/8




al Foundatio

@ Now assume 1-point crossover with crossover chance p; a crossover
point is selected uniformly among m — 1 possible locations

Daniel Tauritz, PhD EA Theory Notes November 16, 2020 5/8



cal Foundations of Genetic Algorithms - Schema Theory

@ Now assume 1-point crossover with crossover chance p; a crossover
point is selected uniformly among m — 1 possible locations
@ Probability of schema destruction:

5(5)

m-—1

(5)

pd(s) <pc-

Daniel Tauritz, PhD EA Theory Notes November 16, 2020 5/8



Theoretical Foundations of Genetic Algorithms - Schema Theory

@ Now assume 1-point crossover with crossover chance p; a crossover
point is selected uniformly among m — 1 possible locations

@ Probability of schema destruction:

5(5)

m-—1

(5)

pd(s) <pc-
@ Consequently, probability of schema survival:

5(S)

>1—p. . ~"7
Ps(s)_]- Pc m—_1

Daniel Tauritz, PhD EA Theory Notes November 16, 2020 5/8



Theoretical Foundations of Genetic Algorithms - Schema Theory

@ Now assume 1-point crossover with crossover chance p; a crossover
point is selected uniformly among m — 1 possible locations
@ Probability of schema destruction:

pu(S) < pe- 2L (5)

@ Consequently, probability of schema survival:
5(5)

>1—p. . ~"7
Ps(s)_]- Pc m—_1

@ New reproductive schema growth equation:

E[E(S, ¢+ 1)] = £(S, 1) ‘“’V"ﬁif)t) [1 e :7(5)1] @

Daniel Tauritz, PhD EA Theory Notes November 16, 2020 5/8



Theoretical Foundations of Genetic Algorithms - Schema Theory

@ Now assume 1-point crossover with crossover chance p; a crossover
point is selected uniformly among m — 1 possible locations
@ Probability of schema destruction:

pu(S) < pe- 2L (5)

@ Consequently, probability of schema survival:
5(5)

>1—p. . ~"7
Ps(s)_]- Pc m—_1

@ New reproductive schema growth equation:

E[E(S, ¢+ 1)] = £(S, 1) ‘“’V"ﬁgf)t) [1 e :7(5'” @

o Finally, add mutation with bit mutation chance p,,; single bit survival
isl—pm

Daniel Tauritz, PhD EA Theory Notes November 16, 2020 5/8



Theoretical Foundations of Genetic Algorithms - Schema Theory

@ Now assume 1-point crossover with crossover chance p; a crossover
point is selected uniformly among m — 1 possible locations
@ Probability of schema destruction:

pu(S) < pe- 2L (5)

@ Consequently, probability of schema survival:
5(5)

>1—p. . ~"7
Ps(s)_]- Pc m—_1

@ New reproductive schema growth equation:

E[E(S, ¢+ 1)] = £(S, 1) ‘“’V"ﬁgf)t) [1 e :7(5'” @

o Finally, add mutation with bit mutation chance p,,; single bit survival
isl—pm
@ Schema survival ps(S) = (1 — pm)°03)
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@ Since p,, < 1, schema survival can be approximated as
ps(S) = 1 —0o(S) - pm

@ Combined reproductive schema growth equation:
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@ Building Block Hypothesis: A genetic algorithm seeks near-optimal
performance through the juxtaposition of short, low-order,
high-performance schemata, called the building blocks

o Consequence: the manner in which we encode a problem is critical for
the performance of a GA - it should satisfy the idea of short building
blocks
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Example Exam Question

Given the following bit strings v; through vs and scheme S

= (01101110101001) fitness(vl) = 0.8
vo = (10110010011001) fitness(v2) = o 1
vs = (00001010011010) fitness(v3) =
vs = (01001110111001) fitness(v4) =

= (01001011100011) fitness(v5) =

5 = (01**11101*100%)
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Do you expect the number of strings matching S to increase or
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Example Exam Question

Given the following bit strings v; through vs and scheme S

= (01101110101001) fitness(vl) = 0.8
vo = (10110010011001) fitness(v2) = o 1
vs = (00001010011010) fitness(v3) =
vs = (01001110111001) fitness(v4) =

= (01001011100011) fitness(v5) =

S = (01**11101*100%)
o Compute the order of S: 10
o Compute the defining length of S: 13-1=12
o Compute the fitness of S: % =10

@ Do you expect the number of strings matching S to increase or
decrease in subsequent generations?
Average pop fitness: 0'8+0'1+150+1'2+1'9 =1.0
Decrease, because fitness of S is equal to the average pop fitness and
S has a high-order and defining length so large destruction chance.
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