Evolutionary Computing
COMP 5660-001/6660-001/6660-D01 — Auburn University

Fall 2025 — Assignment Series 1
Evolutionary Algorithms for the Cutting Stock Problem

Current contributors: Braden Tisdale; Sean Harris; James Browning; Daniel Tauritz, Ph.D.
Previous contributors: Deacon Seals

August 19, 2025

Synopsis

The goal of this assignment set is for you to become familiarized with (I) representing problems in mathemat-
ically precise terms, (IT) implementing an Evolutionary Algorithm (EA) to solve a problem, (III) conducting
scientific experiments involving EAs, (IV) statistically analyzing experimental results from stochastic algo-
rithms, and (V) writing proper technical reports.

The Cutting Stock Problem |https://en.wikipedia.org/wiki/Cutting_stock_problem|, also known
as the Offline 2D Bin Packing Problem, is an extremely important real-world industrial problem belonging
to the NP-hard complexity class. Real-world applications include aerospace (for instance, at Boeing’s Sheet
Metal Fabrication Center), shipbuilding, VLSI design, and manufacturing of shoes, clothing, and furniture.

While highly efficient heuristics have been developed for several variations of the Cutting Stock Problem,
particularly hard variations such as those involving irregular shapes have no known heuristics with low
approximation ratios (the ratio between the generated solution quality and the optimum). Also, atypical
variations sometimes require custom heuristics. One approach to address this is the use of a meta-heuristic
such as an Evolutionary Algorithm to directly solve a given variation. Another approach is the use of a hyper-
heuristic to automate the design of a custom heuristic. This assignment series takes the former approach. A
more in-depth explanation of the problem and our implementation is provided in the accompanying Jupyter
notebooks.

These are individual assignments and plagiarism will not be tolerated. You must write your code in
Python using the provided assignment framework. You are free to use libraries/toolboxes/etc, except for
problem-specific or search/optimization/EA-specific ones. We will allow any standard Python library (e.g.,
random and json), in addition to well-known libraries for generic data processing (e.g., numpy) or visualization
(e.g., matplotlib). If you want to use something outside these categories, or anything not provided in the
base Conda Linux environment, ask a TA for permission.

Version control requirements

For each assignment you will be given a new repository on |[https://classroom.github.com|. You will
create your repository for each assignment by following a link in the relevant Canvas assignment. Please
view your repository and the README.md file. It may clear things up after reading this.

Included in your repository is a script named finalize.sh, which you will use to indicate which version
of your code is the one to be graded. When you are ready to submit your final version, run the command
“chmod 755 finalize.sh && ./finalize.sh” from your repository then type in your Auburn username.

https://en.wikipedia.org/wiki/Cutting_stock_problem
https://classroom.github.com

This will create a text file readyToSubmit.txt which lets us know your submission is finished. Commit and
push this file to your default branch to submit your assignment. You may commit and push as many times
as you like, but your submission will be considered finalized if readyToSubmit.txt exists in the default
branch after the due date. If you do not plan to submit before the deadline, then you should NOT run the
finalize.sh script until your final submission is ready. If you accidentally run finalize.sh before you
are ready to submit, make sure to delete readyToSubmit.txt before pushing. Similarly, if it is past the due
date and you have already pushed readyToSubmit.txt, do not make any further pushes to your repo.

After submission, your latest, pushed, commit to the default branch will be graded if it contains
readyToSubmit.txt. In order to ensure that the correct version of your code will be used for grading,
after pushing your code, examine your repo |https://github.com| and verify that you have submitted
what you intended to. If for any reason you submit late, then please notify the TAs when you have
submitted.

Submission, penalties, documents, and bonuses

The penalty for late submission is a 5% deduction for the first 24 hour period and a 10% deduction for every
additional 24 hour period. So 1 hour late and 23 hours late both result in a 5% deduction. 25 hours late
results in a 15% deduction, etc. Not following submission guidelines can be penalized for up to 5%, which
may be in addition to regular deduction due to not following the assignment guidelines.

The code pushed to the default branch after submission will be pulled for grading. Any files created by
your assignment must be created in the present working directory or subdirectories within it. All Jupyter
notebooks must be completed and submitted with results from running the full notebook. Your submitted
code needs to execute as expected, within the EC-env Conda Linux environment, without error. The TAs
should not have to worry about any external dependencies or environments. Grading will be based on what
can be verified to work correctly as well as on the quality of your source code. You must follow the coding
requirements as stated in the syllabus. Always remember that the TAs will thoroughly examine everything
by hand, and that your code being easy to read and understand is a substantial part of your grade (and
their sanity).

Documents are required to be in PDF format; you are encouraged (but not required) to employ
ITEX for typesetting.

Deliverable Categories

There are three deliverable categories, namely:

GREEN Required for all students in all sections.

YELLOW Required for students in the 6000-level sections, bonus for the students in the 5000-level section.
RED Bonus for all students in all sections.

Note that the max grade for the average of all assignments in Assignment Series 1, including bonus points,
is capped at 100%. That is, if you received 100%, 100%, 90%, and 120% on the individual assignments, you
will receive a 100% for Assignment Series 1.

https://github.com

Assignment 1a: Random Search

In this assignment, you must implement a random search algorithm which generates solutions by uniform
random placement of shapes within a predefined rectangular area. Since this is a random search, rather
than a more intelligent heuristic search, it is expected to produce poor results. It will serve as a baseline to
compare your future EAs against.

You must complete the Jupyter notebook 1a_notebook.ipynb, a partial Python class implementation, and
a report. The notebook will guide you through implementation where you will perform the experiments
necessary to create the report. While implementing the specifications in the notebook, think about what
data you will need to record in order to write the report described below.

Once you've finished the notebook, you need to write a report. This report should include the following:

e A stairstep plot showing the best fitness progression of the run which resulted in the most-fit solution.
e A histogram showing the distribution of fitness values encountered over the experiment.
e A visualization of the best solution discovered over your 30 runs.

e Statistical analysis comparing the best fitness obtained by each run to the provided mystery data. This
should include the sample size, sample means, standard deviations, the test’s p-value, alpha, and a
brief discussion interpreting the results of the statistical test.

The deliverables of this assignment are:
GREEN 1 your source code and completed notebook

GREEN 2 a PDF document headed by your name, AU E-mail address, and the string “COMP x660 Fall
2025 Assignment 1a”, where z reflects the section you are enrolled in, containing your report, including
statistical analysis and plot(s)

GREEN 3 files containing any data you analyzed to write your report or generate your plot(s) should be
saved to the data directory of your repo

Submit all files via GitHub, by pushing your latest commit to the default branch, including readyToSubmit . txt.
The due date for this assignment is 10:00 PM on Sunday, September 7, 2025.

Grading

The point distribution is as follows:
Assessment Rubric \ Deliverable Category ‘ Green
Algorithmic 35%
Programming practices, readability, and implementation | 35%
Report and plot(s) 20%
Statistical analysis 5%
Notebook questions 5%

Assignment 1b: Evolutionary Algorithm Search

In this assignment, you will implement an EA to search for solutions to the cutting-stock problem. This
assignment will utilize the same framework as Assignment la, and builds on some of the code you produced
in that assignment. Treating the problem of cutting stock as a black-box problem, your EA must generate
shape placements and use their evaluated fitness to search for higher-fitness solutions.

In this assignment, you are asked to complete the Jupyter notebook 1b_notebook. ipynb, several functions
outside the notebook which will be reused in later assignments, and a report. The notebook will guide you
through implementation of your EA, and will explain how to perform the experiments necessary to create
the report. While completing the notebook, think about what data you will need to record in order to write
the report described below.

Once you’ve finished the notebook, you need to write a report. This report should include the following;:

e A table of every EA parameter used in your experiment.

e An evals-vs-fitness plot showing the progress of evolution averaged over 30 runs (different from the
stairstep plots from la).

e A histogram showing the distribution of fitness values encountered over the experiment.
e A visualization of the best solution discovered over your 30 runs.

e Statistical analysis comparing the best fitness obtained by each run to data generated by the algorithm
you implemented during la. This should include the sample size, sample means, standard deviations,
the test’s p-value, alpha, and a brief discussion interpreting the results of the statistical test.

This assignment also includes a unit testing suite provided for your benefit. The unit tests will be
called by a cell in the assignment notebook, and when a unit test fails, you are expected to perform basic
troubleshooting before trying to contact a TA. The unit tests are designed so you can determine the
cause of failure and remedy it on your own. Note that, due to the stochastic nature of EAs, the unit tests
have a small chance of creating false negatives or false positives. When in doubt, run them several times
to increase your confidence in their accuracy. Passing these unit tests is part of your assignment
grade — your submission must pass all tests for full points (we will run them several times to ensure accurate
testing). You may not make any changes to the unit tests that changes their outcome (pass/fail). You may,
however, include things such as print statements in them (then run !pytest -rx to see their output), but
you must mention this in your report.

The deliverables of this assignment are:

GREEN 1 your source code and completed notebook

GREEN 2 a PDF document headed by your name, AU E-mail address, and the string “COMP x660 Fall
2025 Assignment 1b”, where x needs to reflect the section you are enrolled in, containing your report,
including statistical analysis and plot(s)

GREEN 3 files containing any data you analyzed to write your report or generate your plot(s) should be
saved to the data directory of your repo

YELLOW 1 up to 10% (bonus for COMP 5660 students, required for COMP 6660 students) for an im-
plementation of Stochastic Universal Sampling (see Figure 5.2, page 84 in the textbook) with ac-
companying report, including all the same components required for the GREEN experiment’s report,
except that the analysis compares performance against the GREEN experiment. You should make
data/1b/easy_yellow and data/1b/hard_yellow subdirectories and log data there as you did in the
GREEN experiment.

RED 1 up to 15% bonus for an implementation of an extra variation (recombination or mutation) operator

meaningfully different from the prescribed method(s).

What does that mean? You tell us! Any

correct algorithm that reasonably fits this definition can be submitted. You must also submit a report
including all the same components required for the GREEN experiment’s report, except that the
analysis compares performance against the GREEN experiment. You should make data/1b/easy_red
and data/1b/hard_red subdirectories and log data there as you did in the GREEN experiment.

Submit all files via GitHub, by pushing your latest commit to the default branch, including readyToSub-
mit.txt. The due date for this assignment is 10:00 PM on Sunday September 21, 2025.

Grading
The point distribution is as follows:

Assessment Rubric \ Deliverable Category

Green ‘ Yellow ‘ Red ‘

Algorithmic

30% 60% 60%

Tuning

10% 0% 0%

Passing unit tests

10% 0% 0%

Programming practices, readability, and implementation

20% 20% 20%

Report and plot(s)

10% 15% 15%

Statistical analysis

5% 5% 5%

Notebook questions

15% 0% 0%

