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Computational Problem Solving

Step 1: build abstract/computational model of the real-world
Step 2: solve computationally in abstract model

“Everything Should Be Made as Simple as Possible, But Not
Simpler”1

Step 3: map solution back to real-world

1https://quoteinvestigator.com/2011/05/13/einstein-simple/
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Computational Problem Classes

Decision problems (e.g. SAT)
Optimization problems (e.g., TSP, MAXSAT)

Modeling (aka system identification) problems (e.g., ML)
Simulation problems
Search problems
Mad Engineer Thought Experiment
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Search Terminology

Many computational problems can be formulated as
generate-and-test search problems
A search space contains the set of all possible solutions

A search space generator is complete if it can generate the entire
search space
An objective function tests the quality of a solution
Graduated solution quality
Stochastic search of adaptive solution landscape
Local versus global optima
Unimodal versus multimodal problems
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Algorithmic Toolbox

A heuristic is a problem-dependent rule-of-thumb
A meta-heuristic is a general heuristic to determine the sampling
order over a search space with the goal to find a near-optimal solution
(or set of solutions)

A hyper-heuristic is a meta-heuristic for a space of programs
A Black-Box Search Algorithm (BBSA) is a meta-heuristic which
iteratively generates trial solutions employing solely the information
gained from previous trial solutions, but no explicit problem knowledge
Evolutionary Algorithms (EAs) can be described as a class of
stochastic, population-based BBSAs inspired by Evolution Theory,
Genetics, and Population Dynamics
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Evolutionary Cycle
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EA Pros

More general purpose than traditional optimization algorithms (less
problem specific knowledge required)
Ability to solve “difficult” problems

Solution availability during computation
Robustness
Inherent parallelism
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EA Cons

Fitness function and genetic operators often not obvious
Premature convergence
Computationally intensive
Difficult parameter optimization
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Biological Metaphors - Darwinian Evolution

Macroscopic view of evolution
Natural selection
Survival of the fittest
Random variation
Genetic drift
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Biological Metaphors - Mendelian Genetics

Genotype - functional unit of inheritance
Phenotype - expression of genotype

Pleiotropy - one gene affects multiple phenotypic traits
Polygeny - one phenotypic trait is affected by multiple genes
Chromosomes - haploid versus diploid
Locus/Loci - gene location/locations on the genome/chromosome
Alleles - variant forms of a gene
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Nature versus digital realm

Environment - Problem search space
Environmental fitness - Fitness Function

Population - Set
Individual - Datastructure
Genes - Elements
Alleles - Datatype
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Assignment Series 1 Genotype-Phenotype Mapping

The genotype is a fixed-length linear representation, with len(shapes)
genes.
Each gene is a 3-tuple (x , y , r) specifying the location & rotation of a
specific shape.

Hence an allele is a tuple of three values, with x and y within the
bounds of the stock, and r within the range 0 to 3.
So a single integer value of x, y, or r is NOT a full allele in our
interpretation.
Some possible phenotypes are:

1 a matrix indicating for each cell which shapes overlap it
2 a matrix indicating for each cell how many shapes overlap it
3 a matrix indicating for each cell whether it’s not overlapped,

overlapped by one shape, or overlapped by multiple shapes
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Genospace versus phenospace

Genotype space
Phenoype space

Encoding & Decoding
Eight/N-Queens Problem
Choice of representation
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Genospace-phenospace mapping

Let F be the decoder function from G (genospace) to P (phenospace) and
x∗ be the global optimum.

F : G → P is surjective if ∀p ∈ P∃g ∈ G : F (g) = p
F : G → P is injective if ∀g1, g2 ∈ G(F (g1) = F (g2)) ⇒ (g1 = g2)
F : G → P is bijective if F is surjective and injective
If F is not surjective and x∗ /∈ F (G), then the EA cannot find the
global optimum. Therefore one should think twice before choosing a
non-surjective decoder function if one cannot guarantee that the
global optimum is still reachable.
F does not need to be injective, but realize there is less to search if F
is injective so there should be sufficient compensation, such as
limiting F(G) to valid solutions in a constraint satisfaction problem.
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The 0-1 Knapsack Problem

Given a set of n items with values vi and cost ci , select a subset that
maximises value while not exceeding the capacity limit Cmax .We consider
two cases:

1 fitness(p) =
∑n

i=1(vi · gi)

2 Modify fitness(p) to exclude items that would exceed Cmax

Daniel Tauritz (Auburn University) EC Lecture Slides August 20, 2025 15 / 17



The 0-1 Knapsack Problem

Given a set of n items with values vi and cost ci , select a subset that
maximises value while not exceeding the capacity limit Cmax .We consider
two cases:

1 fitness(p) =
∑n

i=1(vi · gi)
2 Modify fitness(p) to exclude items that would exceed Cmax

Daniel Tauritz (Auburn University) EC Lecture Slides August 20, 2025 15 / 17



The 0-1 Knapsack Problem

Given a set of n items with values vi and cost ci , select a subset that
maximises value while not exceeding the capacity limit Cmax .We consider
two cases:

1 fitness(p) =
∑n

i=1(vi · gi)
2 Modify fitness(p) to exclude items that would exceed Cmax

Daniel Tauritz (Auburn University) EC Lecture Slides August 20, 2025 15 / 17



Problem solving steps

Collect problem knowledge
Choose gene representation

Design fitness function
Creation of initial population
Parent selection
Decide on genetic operators
Competition / survival
Choose termination condition
Find good parameter values
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Permutation Representations

Order based (e.g., job shop scheduling)
Adjacency based (e.g., TSP)

Encodings
▶ Event space: [A,B,C,D]
▶ Permutation: [3,1,2,4]
▶ Mapping 1: [C,A,B,D] → allele in locus i indicates event in that place

in the sequence
▶ Mapping 2: [B,C,A,D] → allele in locus i indicates when the i th event

takes place
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