Pine decline from a physiological perspective

Mary Anne Sword Sayer

U.S. Forest Service, Southern Research Station RWU-4158, Restoring and Managing Longleaf Pine Ecosystems Pineville, Louisiana

Personal perspective

- How well is the root system is doing its job?
 - acquiring water and mineral nutrients
 - storing energy
 - maintaining vertical support
- Symptoms suggest the root system is not doing its job.
- The incidence of decline may worsen if resources become more limiting.
- Management can be used avoid predisposing conditions.

Presentation outline

- Decline characteristics linked to tree physiology.
- Key physiological mechanisms that naturally allow southern pines to take advantage of, or tolerate a range of stand conditions.
- Consequences of failed mechanisms that can't keep up with what is required of them, or simply fail altogether.
- Data that justify investigating the role of physiology in pine decline.

- Brown, H.D.; McDowell, W.E. 1968. Status of loblolly pine die-off on the Oakmulgee District, Talladega National Forest, Alabama— 1968. USFS Southeastern Area S&PF Report 69-2-28.
- Roth, E.R.; Peacher, P.H. 1971. Alabama loblolly pine die-off evaluation. USFS Southeastern Area S&PF Report 72-2-9.
- Miller, R.E. 1979. Loblolly pine die-off status report. USFS Southeastern Area S&PF Report 79-2-8.
- Sparse, chlorotic crowns
- Poor diameter growth and possible mortality
- Large cone crops one year before mortality
- Lateral root deterioration and fine root mortality one year before crown symptoms
- Mature loblolly pine alone or mixed with shortleaf pine on sites that originally supported longleaf pine

- Hess, N.J., Otrosina, W.J., Carter, E.A., Steinman, J.R., Jones, J.P., Eckhardt, L.G., Weber, A.M., Walkinshaw, C.H. 2002. Assessment of loblolly pine decline in central Alabama. GTR-SRS-48.
- Hess, N.J., Eckhardt, L.G., Menard, R.D., Goddard, A.J., Carter, E.A. 2005. Assessment of loblolly pine decline on the Shoal Creek/Talladega Ranger Districts, Talladega National Forest, Alabama and Choccolocca State Forest. USFS FHP Report 2005-02-05.
- Otrosina, W.J., Bannwart, D., Roncadori, R.W. 1999. Root-infecting fungi associated with a decline of longleaf pine in the southeastern United States. Plant and Soil 217:145-150.
- **Eckhardt, L.G., Weber, A.M., Menard, R.D., Jones, J.P., Hess, N.J. 2007.** Insect-fungal complex associated with loblolly pine decline in central Alabama. Forest Science 53:84-92.
- Sparse, chlorotic crowns, poor diameter growth, deteriorating roots, mature loblolly pine on sites that originally supported longleaf pine
- Disturbed sites (i.e. soil erosion by past land use)
- Unthinned, overstocked stands
- Presence of root disease (Phytophthora cinnamomi, Pythium spp., Heterobasidium annosum, Leptographium spp.)
- Longleaf pine

Indicators of resource deficiencies

- Chlorotic crowns
 - nitrogen, magnesium, iron, zinc, or calcium deficiencies
- Loblolly > longleaf pine, eroded sites
 - loblolly pine is more resource-demanding than longleaf pine
 - decline is most prevalent for loblolly pine planted "offsite, or on eroded sites

- Indicators of inadequate carbon fixation or allocation
 - Sparse crowns
 - Less leaf area and whole-crown carbon fixation
 - Less carbohydrate allocated to the root system
 - Poor diameter growth
 - Less carbohydrate allocated to stemwood
 - More allocated to the root system and defense chemicals
 - Lateral root deterioration, fine root mortality, root disease
 - Inadequate carbohydrate allocated to roots and ectomycorrhizae
 - Less carbohydrate allocated to defensive chemicals
 - Unthinned, overstocked stands
 - Light limitations to photosynthesis are possible
 - Self-pruning has reduced the live crown
 - Self-thinning is delayed after crown closure

- Normally, southern pines avoid resource deficiencies
 - Downward leaf area adjustment
 - C allocation shifts that favor root system growth
 - Internal recycling of mobile nutrients

Mixed hardwood and loblolly pine, age 15 years, North Carolina								
Pine stand information		LAI (m²/m²)		RAI (m²/m²)		A _R :A _L		
Enon clay loam	Lakeland sand	Loam	Sand	Loam	Sand	Loam	Sand	Hacke et al. (2000) Oecologia 124: 495-505.
1320 trees/ha at 20 yr	15 m ² /ha at 11 yr; 1260 trees /ha at 8 yr	3.2-4.6	1.6-2.0	5.5	14.2	1.7	9.8	
Longleaf pine, multi-aged, Georgia								
Mesic (sandy upland terrace with an argillic horizon)	Xeric (sandy upland ridge with no argillic horizon)	Mesic	Xeric	Mesic	Xeric	Mesic	Xeric	Addington et al. (2006) Plant, Cell, and Environment 29: 535-545.
10.7 m²/ha; 230 trees/ha	2.7 m ² /ha; 54 trees/ha	0.7-1.1	0.2-0.4	1.3	0.7	1.2	1.7	

C allocation shift from shoot to root

Downward leaf area adjustment

- conserves water
- maintains cellular nutrition

C allocation shifts that favor the root system

- □ root system expansion
- energy for ectomycorrhizal fungi
- deep root growth

Internal recycling of mobile nutrients

- Example: N and Mg to enzymes and chlorophyll in young foliage
- Example: K to stomatal guard cells

It is important to respect the energy needs of ectomycorrhizae.

- Sims et al. (2007) Mycorrhiza 17: 299-309.
 - Ergosterol analysis to quantify EM fungi
 - Hartig net, mantle, extramatrical hyphae, rhizomorphs, fruiting bodies
 - Closed-canopy longleaf pine, sandy soil
 - EM fungus production was 49 g / m² / yr
 - 95% was extramatrical hyphae and rhizomophs
- Jones et al. (2003) Oecologia 134: 132-143.
 - In-growth cores to assess fine root production
 - < 2 mm diameter pine roots and EM</p>
 - 70-yr-old longleaf pine, sandy loam soil
 - □ Fine root production was 52 g / m² / yr

EM extramatrical hyphae are a vital part of the root system.

- Downward leaf area adjustment
 - conserves water
 - maintains cellular nutrition
- C allocation shifts that favor the root system
 - □ root system expansion
 - energy for ectomycorrhizal fungi
 - deep root growth
 - deep water supports fascicle physiology.
 - allows the hydraulic redistribution of water to shallow roots.
 - Hacke et al. (2000) Oecologia 124: 495-505.
 - □ Sand: ~190 cm rooting depth
 - □ Loam: ~20 cm rooting depth
 - □ Deep roots in sand supplied the water that was needed to avoid root xylem cavitation and maintain whole crown transpiration.
- Internal recycling of mobile nutrients
 - □ Example: N and Mg to enzymes and chlorophyll in young foliage
 - Example: K to stomatal guard cells

- Downward leaf area adjustment
 - conserves water
 - maintains cellular nutrition
- C allocation shifts that favor the root system
 - □ root system expansion
 - energy for ectomycorrhizal fungi
 - deep root growth
- Internal recycling of mobile nutrients
 - □ Retranslocation before fascicle senescence
 - Dalla-Tea and Jokela (1994) Forest Science 40: 650-662.
 - □ Supplied 8 to 36% of the next year's aboveground demand for P.
 - Mobilization to supply tissues when a deficiency occurs
 - Mobilization to support a specific process
 - Example: K from older foliage to the stomatal guard cells of younger foliage to improve stomatal function during drought.

Consequences of disrupted stress avoidance

Downward leaf area adjustment

- Less whole-crown carbon fixation
- Reduced fraction of carbon allocated to the root system

C allocation shifts in favor root system

 Inadequate root and EM growth that worsens soil resource limitations

Internal recycling of mobile nutrients

- □ Inefficient function of some processes in new tissues
 - stomatal control by guard cells (K)
 - chlorophyll synthesis (Mg, N)

These conditions could lower biochemical defenses and increase attractiveness to insect pests.

Consequences of disrupted stress avoidance

Hypothesis

- Failure of one or more resource stress avoidance mechanisms plays a critical role in pine decline.
- The failed stress avoidance mechanism(s) and the cause of this failure vary by location.

Justification

Sources of information

- Longleaf pine nutrition at Fort Benning, GA
 - Mary Anne Sword Sayer, Lori Eckhardt, and Emily Carter
- Longleaf and slash pine nutrition and growth at Eglin Air Force Base, FL
 - Sandy Pizzolato, Center for Environmental Management of Military Lands, Natural Resources Section—Forestry Element, Eglin Air Force Base, FL
- US Forest Service, Southern Research Station, Pineville, LA
 - Longleaf pine rooting and soil physical properties
 Mary Anne Sword Sayer and Dave Haywood
 - □ Longleaf pine physiological responses to crown scorch
 - Mary Anne Sword Sayer and Dave Haywood

Fort Benning, GA

- Foliar nutrition of 3 dominant and healthy longleaf pine trees in each of 16 plots
- □ Plot age fell into 4 ages classes: <10, 10-20, 20-40, and >40 yr
- 9 PD-unlikely plots and 7 PD-likely plots by the loblolly pine decline risk map

Eckhardt and Menard (2008) For. Ecol. Manage. 255: 1735-1739

- Sandy soils (Cowarts fine sandy loam, Ailey loamy sand, Troup fine sand)
- July 2007, during the growing season
- □ 2006L and 2007-1 and 2007-2 cohorts of foliage, small woody roots

Eglin Air Force Base, FL

- Access to a data set containing foliar nutrition, soil fertility, and annual height growth for 24 stands (19 longleaf pine, 5 slash pine)
- Stand age ranged between 12 and 51 years
- Stands were labeled as <u>normal</u> or <u>stunted</u> based on height growth.
- Sandy soils (Lakeland sand, Troup fine sand)
- □ February 2006, dormant season
- 2005L cohort of foliage

Results

H/UH category did not affect nutrition at either location.

- Foliar nutrition was similar at both locations.
- Nutrition was sufficient at both locations based on recommendations for longleaf pine (Dickens et al. (2003) Better Crops 87: 12-15).
- Foliar Ca was high at both locations.

Results

- H/UH category did not affect nutrition at either location.
- Foliar nutrition was similar at both locations.
- Nutrition was sufficient at both locations based on recommendations for longleaf pine (Dickens ED et al. (2003) Better Crops 87: 12-15).
- Foliar Ca was high at both locations.

Interpretation

- Trees at both locations have adapted to nutrient-poor and droughty conditions.
 - Downward adjustment of leaf area
 - C allocation shift in favor root system
 - Internal recycling of mobile nutrients
- Elevated foliar Ca may occur naturally at these locations.
- Trees at both locations may need elevated foliar Ca to adapt to site conditions.

- Elevated foliar Ca may occur naturally at these locations.
 - □ The root system surface absorbing area is high.
 - □ Ca moves from the root to the foliage in the transpiration stream.
 - □ Foliar Ca is immobile and therefore, it accumulates.
- Trees at both locations may need elevated foliar Ca to adapt to site conditions.
 - □ Foliar Mn was very high at both locations.
 - □ Trees have Mn tolerance mechanisms but they require Ca.

- ¹ Marschner (1995) *Mineral Nutrition* of *Higher Plants*. 889 p.
- ² Van Lear and Smith (1990) Plant and Soil 36: 331-347.

- Why worry about elevated foliar Mn?
 - Mn competes with Mg in biochemical reactions.
 - Mn interferes with Ca transport.
 - Mn accelerates the activity of polyphenoloxidase.

Eglin Air Force Base

Relationship between height growth and foliar Mn

- Annual height growth declined as foliar Mn increased.
- Stunted stands had higher foliar Mn concentrations.

Fort Benning

Relationship between Ca and Mn in foliage and small roots

- Ca increased as Mn increased in foliage and small woody roots.
- The PD-likely trees had a smaller range of tissue Mn compared to the PD-unlikely trees.
- The trees on the PD-likely plots may have no longer appeared "dominant and healthy" when foliar Mn increased above 525 ppm.

Justification-soil limitations to root growth

- Circumstances that may disrupt resource stress avoidance
 - Elevated foliar Mn and/or inadequate foliar Ca
 - Soil limitations to root growth
 - Leaf area re-establishment after crown scorch

Root-limiting characteristics of silt loam soils in LA

- High bulk density
- Low porosity
- Water deficit
- High soil strength

Western LA

Guyton and Beauregard silt loams

at > 2.0 MPa

Justification-soil limitations to root growth

- These soil limitations are overcome by cracks and old root channels.
- How do management activities that manipulate understory vegetation affect the size, amount, and distribution of these conduits?
- Do these conduits have a role in root system expansion and deep root growth during drought?

Justification- leaf area re-establishment

- Circumstances that may disrupt resource stress avoidance
 - □ Elevated foliar Mn and/or inadequate foliar Ca
 - Soil limitations to root growth
 - Inability to re-establish leaf area after crown scorch

- Leaf area re-establishment was completed by four months after crown scorch.
- Leaf area re-establishment was correlated with the availability and mobilization of root starch.
- There was no negative effect of crown scorch on stemwood growth, or fine root biomass.

Justification- leaf area re-establishment

Seasonality of growth and storage processes for pines in central LA

- Insuring leaf area reestablishment may be difficult.
 - Fascicle growth may already be slow.
 - Root starch may not be a plentiful energy source for fascicle growth (Sep.-Nov.).
 - In some years, water deficit could decrease the amount of current photosynthate available for new fascicle growth.

- Prescribed fire was applied in May.
 - Starch had accumulated in woody roots.
 - Small window of time before the fine root demand for energy would increase.
 - □ Larger window of time before the EM demand for energy would increase.

Pine decline from a physiological perspective

Summary

- Some symptoms of pine decline suggest that natural resource stress avoidance mechanisms have been disrupted.
- Disruptions may be due to an inadequate supply of energy to the root system, and/or poor root system function.
- Possible causes of inadequate root energy include:
 - Downward adjustments in leaf area that can no longer meet the root system energy requirement.
 - Elevated foliar Mn or a Mn:Ca imbalance that interferes with fascicle physiology.
 - Inability to re-establish leaf area after scorch.
- Possible causes of poor root system function include:
 - Inadequate root energy.
 - Soil limitations to root growth.

