

Unmanned Aerial Systems (UAS) for Precision Agriculture and Pest Control Uses

Henry W. Brandhorst, Jr.

President and Chief Technology Officer Carbon-Free Energy, LLC Auburn, AL 36830

November 18, 2010

Background

- Advanced Technology Associates (Littleton, CO) and Corporate Air (Billings, MT)
 - Have established a working group aimed at developing a major center for UAS applications in Montana
 - Corporate Air does business world-wide, so is well known in MT
 - Plan to develop an affordable UAS for commercial uses
 - Remote sensing for agriculture, forestry and other applications
 - · Priority depends on user response and funding

Auburn has been involved

- Agricultural inputs provided
- Some forestry applications discussed (Pine bark beetles)
- Open to having Auburn (and Alabama) a test site
 - When vehicle and infrastructure permit
 - But specifics of needs need clarification
 - Crops, pests, etc.

UAS Program Phases

- Phase 1 (Public Funding)
 - Proof of Principle
 - Fixed Wing Aircraft
 - Developmental Avionics
- Phase 2 (Public Funding)
 - UAS Preliminary Design and Flight Test
 - Initial Integrated Flight Data
 - Business Plan Completed
- Phase 3 (Private Funding)
 - Flight Certification
 - Multi-Flight Certification
- Phase 4 (Private Funding)
 - Build Required Fleet
 - Operations

Present Industry Working Group

Organization/Location	Contact Name	Roles/Responsibilities
Advanced Technology Associates, Inc. (ATA) Colorado/Montana	David Scruggs/Grant Williams	Program Management / Software /Systems/ Business Management
Schafer Corporation/ Alabama	Bruce Peters Ph.D.	Communications
Resonon Inc./ Montana	Rand Swanson	Hyperspectral Sensors
Innovative Integration/ California	Dan McLane	Digital Hardware
Carbon-Free Energy, LLC / Alabama	Henry Brandhorst Ph.D.	Systems Requirements/Coordination
Montana State Univ.	Rick Lawrence Ph.D.	Biosystems
Stratom/Colorado	Mark Gordon	Robotics
Corporate Air/Montana	Mike Overstreet	Operations
Colorado School of Mines/Colorado	Robert King Ph.D.	Vehicle Design/Sensors/Geology

Non-Military Markets

Border Surveillance Pipe/Power Line Surveillance

Suspect Tracking Agricultural Applications

Traffic Monitoring Communications/Broadcast

Disaster Response/Relief Movie Production

Damage Assessment Aerial News Coverage

Atmospheric/Weather Research Mail/Freight Transport

Critical Infrastructure Monitoring Flood Mapping

Damage Surveying Real-estate Mapping

Aerial Photography Mining

Wildlife Monitoring Sporting Event Coverage

Source: Association Unmanned Vehicle Systems International 2010

DoD Annual Funding Profile for UAVs

- Exponential Growth
 - 2009 All Market Growth
 - \$3.5 B
 - 2010 All Market Growth
 - \$7.5 B
 - 2010 to 2015 DoD Market
 - \$68 B
- Commercial Market U.S.
 - Limited to Research
 - \$200 M/Y
 - We're hoping to help increase this funding sector
 - Expect it to be VERY large
 - Regional agricultural and forestry market differences

Source: Association Unmanned Vehicle Systems International 2010

Current Activities

Why Montana?

- Corporate Air is Headquartered in Billings, Montana
- Montana Governor Brian Schweitzer
 - Supports the Program
- Montana Senators Max Baucus and Jon Tester
 - Support the Program
- Montana has Two of the Largest and Unused Military Operations Areas (MOA)
- Montana wants to become the FAA's Center of Excellence for UAS's
 - Montana wants an Aerospace Industry also
- Montana has Pine Bark Beetles and agriculture too!
- What are the issues for UASs and forestry/agriculture
 - Pine Bark Beetles specifically

Pine Bark Beetles

About <u>54%</u> of the U.S. tree losses are attributed to scolytids

 Distribution of mortality tends to be clumpy

Mountain Pine Beetle: 1 yr. life

- #1 mortality agent in western pines
- Flies from dead trees to live ones in July-August – range ~1 mile
 - Up to 70 miles in wind!
- Develop in the phloem tissue under the bark
- Carry blue stain fungus

Signs of infestation

- Usually found on foot
 - Pitch tubes, boring dust, woodpeckers
- However, due to the distributed nature of the infestation, tracking on foot is problematic

Forestry Health Cooperative Nov, 17-18, 2010

Pine Bark Beetles

Fading of the tree crowns

- Usually occurs ~9-10 months after attack (April-June)
- Whole crown changes color rather uniformly
- When followed on foot it takes a long time to identify all the clumps
- Use of airplanes has not been cost effective
 - Location mapping inaccurate
 - Cost of pilots and observer(s)
 - Limited flying time/area coverage

The UAS may help solve these limitations

- Hyperspectral imaging <u>may</u> identify infestations earlier than on foot
 - High position accuracy easy
- But only limited data available
 - Your inputs needed

Airborne image of pine trees and juniper bushes: Classification map (top) - Real color (bottom) Juniper (green) and Pine (red)

Forestry Health Cooperative Nov, 17-18, 2010

Hyperspectral Imaging

Airborne imaging spectrometer system

- Imaging spectrometer
- Data acquisition computer
- Interface for collecting GPS/IMU data
- System control software
- Geo-rectified image data using attitude/position data

Data reduction and analysis

- This is the tricky part
- Requires signature identification through ground truth
- Key spectral bands identify infestation, weeds, fuel loading in forests, etc...
- Image processing software available

Courtesy of Resonon, Inc.

False color highlighting healthy vegetation

Hay field aerial image

Screenshot of a leaf "datacube"

Forestry Health Cooperative Nov, 17-18, 2010

Data Reduction Features Overview

Tools:

- Spectrum Pixel Inspector
- Panning & Zooming
- •Rectangle & Freehand ROI Selection
- Rotation and Flipping

File Formats:

- •Datacube: BIL, BIP, BSQ
- •Image Export: PNG, JPEG, BMP, ...

Plots:

- Single pixel spectrum
- •X axis cross section
- Y axis cross section

Image Acquisition Tools:

- •Focus
- Calibration
- Scanning

Image Acquisition Modes:

- Reflectance
- Radiance
- Raw Data

Extendable Plugin Architecture:

- •Python Interpreter Console
- Plugin Templates

RGB Renderings:

- True Color
- Near Infrared
- By Band Number
- By Band Wavelength
- By Band Name

Gray scale Renderings:

- By Band Number
- By Band Wavelength
- By Band Name

Datacube Manipulations:

- •Bin
- •Crop
- Correct
- Convert
- Subtract
- Multiply
- •CIE Colorspace conversion
- Principal Component Analysis (PCA)

Datacube Classification:

- Euclidian Distance
- Spectral Angle Mapper (SAM)
- Quadratic Discriminant Analysis (QDA)
- Spectral Unmixing
- Many Agricultural Classifications

Courtesy of Resonon, Inc.

Forestry Health Cooperative Nov, 17-18, 2010

Types of UASs

Wide range of sizes and CO\$T\$

- DoD vehicles too expensive, too big a payload!
- Small systems are at the edge of utility
 - Flight times of 6-8 hrs.
 - 20 mile range
- Many fly at 100 mph
 - Suitable for agricultural and forestry uses
- Must have a pilot
 - But can handle multiple UASs
- A center will guide efforts

Dragon UAV 25# p/l

Manta UAV 15# p/l

Phase 1 UAS Program

- Phase 1 is estimated to take 18 months
 - Integrate sensor package
 - Resonon Hyperspectral camera
 - 400 to 900 nm wavelength (240 bands, 80 usually recorded)
 - 5 generally sufficient for assessing plant health (depending on plant)
 - LIDAR scanner for terrain (helps in interpreting hyperspectral data)
 - Infrared sensor
 - 1000 to 1700 nm wavelength
 - GPS
 - Position and Time
 - Data turnaround in 48 hours
 - Design and integrate single string UAS avionics system
 - Fly proof of concept on fixed wing aircraft
 - Montana Test Site
 - But other sites possible
 - Collaboration with Auburn invited (expected!)
 - Agriculture and Forestry specifics

Input Desired from Users

Help to define needs

- Forestry/Agriculture
- Spectral bands and resolution
- Acreage to be covered
 - We know this is very large
 - Will impact the vehicle size and range
- What types of infestations are of interest
 - Pine bark beetles?
 - Others

We've talked to agriculture experts at Auburn for their inputs

- Price/value
- Timeliness
- Accuracy
- etc.

Agricultural Inputs

What would they be willing to pay?

 \$3-\$10/acre for row crops like cotton, peanuts, soybeans, etc., but double that (\$6-\$20) for specialty crops like fruits and vegetables

What resolution do they need?

0.5m at least, more is better (must be at a row level (30"-40"). Field truth is necessary

Timeliness is a critical issue:

- Can't wait more than a couple of days for the results
- Data processing has been a major bottleneck in the past
- Cloud cover that prevents a flight is an issue (sensor types)

Types of agricultural information desired:

- Soil moisture content (e.g. water)
- Fertility regimen (several measures)
- Plant growth
- Insect/viral/fungal infections

Data processing:

- Background subtraction
- Ground truth validation
- Features extraction

Determining yield and maximizing yield determines farmers' profitability

Directly applies to forestry needs as well

Industry Participation

National Airspace Issue

- Integration of UAS into the National Airspace is a Safety Issue
 - FAA <u>prohibits</u> UAS commercial flights
 - FAA requires Certificate of Authorization (COA) for each kind of UAS
 Flight
- The number of COA's are growing each year (next side)
 - Takes up to 6 months to process one COA
- The UAS Airspace Issue is world wide
 - Europe established a working group
 - Australia has integrated a UAS Airspace strategy
- The solution of the National Airspace Issue enables commercial UAS markets
 - Estimated US UAS commercial markets will be \$100 B/y (Department of Commerce)

Source: Association Unmanned Vehicle Systems International 2010

Certificate of Authorization (COA)

COA Requests Received by the FAA

Source: Association Unmanned Vehicle Systems International 2010

FAA and UAS Markets

Actions Underway

Montana State Government

- Provide Funding for Start-up
- Provide Funding for Phase I Program

Congressional Delegation – Ongoing Effort

- Assure FAA UAS Center of Excellence Located in Montana
- Support the Establishment of a NASA UAS Technology Test
 Center in Montana
- Identify & Facilitate Federal Funding for Montana UAS Programs
 Through Federal Grants to State Universities

UAS Industry Working Group - Ongoing

- Provide technical and management support
- Provide inputs/needs for targeted commercial areas
 - Forestry and agriculture
 - Seeking direct benefit to Alabama!

Summary

- Advanced Technology Associates and Corporate Air have started a campaign to establish a major UAS center in Montana
 - Focus is on affordability and commercial applications
 - Forestry and Agriculture
 - Due to the huge impact pests, etc. have on profitability
 - Many unknowns yet
 - Cost effectiveness, customer base, diverse requirements
 - · Airframe, data acquisition and processing
 - But have expert companies involved
 - Need user needs and specifics
 - Pine bark beetles are a major target
 - Your help is needed to help establish sensing requirements/timeliness
 - Price of information, timeliness, value?
- Significant issues need to be overcome
 - National airspace/FAA
 - Safety, etc...

Acknowledgements

 Many thanks to David Scruggs and Grant Williams (ATA) for providing the programmatic details of the Montana UAS Center project and plans