

Introduction

Maria Soledad Peresin (Sole)

Assistant Professor, Forest Biomaterials

334-844-8829

Office: FPL 116

AUBURN UNIVERSITY

Forest Products Development Center School of Forestry & Wildlife Sciences

Degrees:

BS. Forest Biomaterials

MS. Forest Biomaterials

Licenciate, Analytical Cl

PhD. Forest Biomaterial

Expertise: Peresin spe

components.

Research Interests:

Partners

http://wp.auburn.edu/forestproducts/

FOREST PRODUCTS DEVELOPMENT CENTER SCHOOL OF FORESTRY AND WILDLIFE SCIENCES ractions of plant cell wall

and surface science.

Traditional Uses of Wood

Vasa Ship (Sweden)

-uel!

Rethinking the use of tres and wood components (and other biomass)

Southern Pine Beetle damage

Dendroctonus terebrans

www.barkbe

5

Chemicals currently labeled for bark beetles

Imidacloprid

- Systemic insecticide that acts as an insect neurotoxin
- Neonicotinoids chemical family → acts on the central nervous system of insects, with much lower toxicity to mammals.

• Fipronil

- Broad-spectrum insecticide
- Phenylpyrazole chemical family → disrupts the insect central nervous system by blocking chloride channels.

• Emamectin benzoate

- Produced by the bacterium Streptomyces avermitilis

A deeper look into biomass

Nanocellulose and Lignin nanoparticles

Cellulose nanocrystals (CNC)

Peresin et al. *Biomacromolecules* (2010) 11, p. (Adapted from Pakko et al. *Biomacromolecules* (2007) 8 p.1:

<u>Ellera de constantito a</u>

- Excellent mechanical strength
- High surface-area
- Abundant free hydroxyl and phenolic groups
- High binding capability
- Biocompatibility, biodegradability and sustainability

Sampling

Cooling

Heating

Feeding

Lignin Nanoparticles (LNPs)

ACS Appl. Mater. Interfaces, 2016, 8 23302

Cellulose nanofibrils (CNF)

Pitkänen et al. *Cellulose* (2014) 21 (6) p. 3871 Adapted from Pakko et al. *Biomacromolecules* (2007) 8 p.1934

Bark Beetle control proposed approach

Cellulose nanoparticles (CNPs)

Pitkänen et al. Cellulose (2014) 21 (6) p. 3871 Adapted from Pakko et al. Biomacromolecules (2007) 8 p.1934

Lignin nanoparticles (CNPs)

ACS Appl. Mater. Interfaces, 2016, 8 23302

Biocide delivery system (BDS)

- Controlled pest management
- Efficient protection
- Reduced environmental impact

Chemicals impregnation

Imidacloprid

Emamectin benzoate

Sifter/spray

- Sampling of seedlings (needles, stems, roots) at various time points (weekly for 10 weeks).
- Ground tissues will be ground and analyzed to determine movement of pesticide through seedling tissues.

Maria Soledad Peresin, Ph.D.

Assistant Professor
Forest Products Development Center
SFWS
Auburn University
520 Devall Dr.
Auburn, AL 36832-5888
soledad.peresin@auburn.edu