Chemical defensive reaction of *Pinus taeda* to *Leptographium terebrantis* invasion

John K. Mensah¹, Ryan L. Nadel¹, George Matusick², Zhaofei Fan¹, Mary A. Sword Sayer³ and Lori G. Eckhardt¹

¹School of Forestry and Wildlife Sciences, Auburn University, Auburn, Alabama; ²The Nature Conservancy, Fort Benning, Georgia; ³USDA Forest Service, Southern Research Station, Pineville, Louisiana

- Chemical defensive responses
 - Constitutive
 - Induced
- Induced chemical responses
 - Protein based
 - Non-protein based
- Specific and toxic
- Bind hydrolytic enzymes
- Bind amino acids and proteins

- Soil nutrients Essential for plant growth
- Deficiency Inhibit growth
- Nutrients Translocated
- Immobile Ca, Cu, B, S, Fe
 - Accumulation leaf area reduction
- Remobilized N, P, K, Mg, Cl, Mo, Zn

Objectives

- Assess the chemical defensive response and mineral nutrient dynamics to pathogen invasion
- Determine the relationship between the multiple defensive chemicals produced

Hypotheses

- A significant reduction of resins and phenolics in loblolly pine trees following fungal invasion
- Nutrient accessibility and supply to growing tissues will decrease with increased fungal inoculum

Approach - Resins

- North-south sides of each tree were sampled by punching a hole with 1.9 cm diameter arch punch at DBH
- A plastic connector was screwed into the tree to direct resin into a pre-weighed plastic tube attached to the connector
- Tubes were removed after 24hrs and transported
- Average resin weights were determined

Approach - Phenolics

- Upper crown branch tissue was shot
- Fascicles on branches were ripped off
- 10cm portion of the woody branches were excised
- The samples were freeze dried for about 24 hrs
- Milled into powder
- 50 mg of the powdered branch sample was extracted 70% acetone

Approach - Phenolics

- Extraction 70% acetone
- Development Na₂CO₃
- Absorbance Spectrophotometry

Approach - Foliar nutrients

- About 25 fascicles
- The samples were forced-air oven dried at 70°C
- Foliar nutrients Waypoint Analytical (Memphis, TN)

Results - Resins

Results - Total phenolics

Results - Foliar macronutrients

Results - Foliar micronutrients

Post Inoculation Reaction

Wound High High

Conclusions

- Macro- and micronutrients were adequate except Cu
- Resin flow rate 1.0 g/day and no significant difference prior treatment
- Phenolic content was highest and lowest in wound and medium treatments respectively
- High innoculum trees were characterized by pitch tubes and resinosis
- Inducible defensive system activated
- What happens next....?

Acknowledgements

- Luis Mendez
- Dalton Smith
- Andrea Cole
- Shrijana Duwadi
- Jessica Ahl
- Charles Essien
- Pratima Devkota
- Kristi Wharton
- Dr. Susana Sung
- Undergraduates

