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ABSTRACT  

Loblolly pine defoliation was first noticed in 2013 and currently has been observed on more than 

25,000 hectares of loblolly plantations in Alabama. Lecanosticta acicola is the predominant 

pathogen causing loblolly pine defoliation in combination with common needle cast pathogens in 

Alabama (see Chapter II). Understanding abiotic factors such as temperature, precipitation, and 

moisture influence on loblolly pine defoliation is important to predict defoliation severity in 

following years in Alabama. Weather data were collected from 14 land- based weather stations 

located within a 10 m radius of the infected stands. Forty years of long- term regional weather 

data indicates that there was an increase temperature and a decrease precipitation in this region 

from 1981 to 2019. Data confirmed that the previous year’s Max.  

February, Max. June and Min. May temperature and increasing July and decreasing fall 

precipitation are the best predictors of defoliation severity in Alabama. Increasing summer 

months precipitation and temperature are expected to favor loblolly pine defoliation the 

following years. Climatic models were developed to aid private landowners and forest managers 

to adjust their management strategies accordingly.  

5.1. INTRODUCTION  

Lecanosticta acicola is a predominant pathogen associated with brown spot needle blight in both 

natural and plantation loblolly pine stands in Alabama. From the first half of the 20th century, L. 

acicola has been a persistent problem for grass stage longleaf pine seedlings in the southeastern 

United States (Siggers, 1944). Later this disease was found to cause serious damage to scotch 

pine Christmas tree plantations in Wisconsin and Minnesota (Skilling & Nicholls, 1974).  



Historically, this fungal pathogen was found to be associated with loblolly pine trees in its native 

range (Siggers, 1944; Hedgcock, 1929) but its impacts on tree health were never assessed as 

damage and tree mortality were not observed until recently. Diplodia sapinea, Lophodermium 

spp., and Coleosporium spp. pathogens have been found associated with loblolly pine 

defoliation. Two other fungi Rhizosphaera kalkhoffii and Sydowia polyspora have also been 

recovered in association with L. acicola. These fungi may affect disease severity in the infected 

stands. The understanding of abiotic factors such as temperature, precipitation and relative 

humidity is important as they may drive the emergence and spread of disease.  

Needle disease and host susceptibility are correlated to climatic factors such as temperature and 

moisture (Wyka et al., 2017; Broders et al., 2015; Munck & Burns, 2012). Changing 

environmental conditions such as increasing temperature, precipitation, and humidity favors 

foliar fungal disease development by altering fungal virulence and behavior (Skilling and 

Nicholls, 1974). Moreover, temperature and moisture directly influence pathogen distribution 

and movement into area where regional climates are conducive for spore reproduction and 

survival (Sturrock et al., 2011).  

Increasing overnight minimum temperature, summer and spring rainfall following needle 

wetness were found positively correlated to Dothistroma septosporum infection (Woods et al., 

2005). Similarly, increasing winter mean temperature and spring precipitation was projected to 

increase Swiss needle cast disease in the Pacific Northwest (Manter et al., 2005). In the northern 

United States, white pine needle damage resulting from multi-fungi interactions were expected to 

become worsen with increasing spring and summer rainfall and winter temperature (Wyka et al., 

2017). A study tested climatic influence on the distribution of Fusarium spp. and found that 

differences in Fusarium communities were resulted from differences in temperature which 

mimicked the natural communities of Fusarium spp. found in similar temperature gradients 

(Saremi et al., 1999).  

Predictions of pathogen behavior to changing climate conditions are challenging and constitute a 

high degree of uncertainty. In forest settings, it is even more complex because of long-lasting 

tree life versus the short life span of pathogens (Burdon et al., 2021; Gray et al., 2013). The 

objectives of this study were to (a) determine if climatic patterns drive the recent emergence and 

spread of loblolly pine defoliation and (b) develop a climatic regression model to predict disease 

severity of loblolly pine to aid forest managers to adjust management strategies accordingly.  

5.2. MATERIALS AND METHODS  

5.2.1. Visual rating, and mapping of pathogen distribution  

Total 32 brown spot needle blight infected loblolly plots were sampled from March to 

November. Needle samples were collected from the number of 212 symptomatic trees using a  

0.22 mag caliber rifle. Samples were placed in a cooler and brought back to the laboratory in 

Auburn. Rating of the crown infection was scored as follows (a) less than one-third of the crown 

infected (<1/3) (b) one-third to two-thirds of the crown infected (1/3 to 2/3) and (c) more than 

two-thirds of the crown infected (>2/3). Tree and site information such as aspect, slope, recent 

silviculture were also collected (Wyka et al., 2017). 

5.2.2. LPND infected sites and climatic records  



Climate data available online in National Climatic Data Center were collected to obtain regional 

historical weather data and station history. Daily summary observations of temperature, 

precipitation and relative humidity around infected stands were collected. Since preceding year 

temperature, moisture and precipitation have been shown to be the best indicators of following 

years defoliation (Munck & Burns, 2012; Wyka et al., 2017), daily maximum and minimum 

temperature, the sum of seasonal precipitation in the year preceding scoring defoliation ratings of 

infected trees were obtained from NOAA online data. Counties with available weather stations 

were identified and measured the distance from the infected stands using an interactive mapping 

tool. Weather data were collected within 10 miles radius of infected stands except for two 

stations due to data availability. To collect relative humidity data, POWER Data Access Viewers 

were used. Data points were selected based on the longitude and latitude of infected stand.  

Missing data were adjusted, maximum and minimum temperature were averaged, and the sum of 

precipitation was estimated.  

5.2.3. Statistical analyses  

To build climatic regression models, forty-nine climatic variables were included in the model. 

Average maximum and minimum temperature of the following: spring (March to May), summer 

(June to July), modified spring (May to August), and winter (December to February). Average 

relative humidity and cumulative precipitation were included as follows: spring, summer, 

modified spring and winter. Individual months within these seasons were also collected. To 

predict the best-fitted regression model, the stepwise selection was performed to choose 

variables in the model. Final linear regression models were performed with eleven variables in 

the model since they explained relationships with loblolly pine defoliation severity. 

Several statistical analyses such as Akaike Information Criterion (AIC) were used to verify small 

sample correlation, Variation Inflation Factor (VIF) was used to check collinearity of the 

variables, adjusted R2, root-mean-square error, and model parsimony were tested to develop 

confidence on the models.  

5.3. RESULTS  

5.3.1. Long-term regional weather data  

Forty years of regional long-term weather data revealed that increasing temperature and 

decreasing precipitation in the region during loblolly pine growing season. About 10C shifts of 

mean temperature from 1980 to 2019 (Figure 5.3). Rainfall patterns decreased in infected sites. 

Cumulative rainfall decreased from 1400 mm to 1300 mm from 1981 to 2019 (Figure 5.4). 

However, no changes in relative humidity from 1981 to 2019 (Figure 5.5). 

5.3.2. Climatic regression model to predict loblolly pine defoliation severity in future  

One factor model predicted that decreasing May minimum temperature was negatively correlated 

to loblolly pine defoliation severity in the coming year. May minimum temperature was added 

with February maximum temperature in the 2-factor model and model significance was 

improved from 37% to 66%. The 2-factor model found that May minimum temperature and 

February maximum temperature are the best predictors of loblolly pine defoliation severity.  

The best 3-factor model included sum fall precipitation as well as other two predictors i.e., May 

minimum temperature and February maximum temperature in the model. Lowering cumulative 

fall precipitation in the preceding year predicted increasing loblolly pine defoliation severity in 



the following year. Following that, the best 4-factor model added cumulative July precipitation 

and improved the model significance by 4% and predicted loblolly pine defoliation severity 

related to the previous year’s decreased cumulative fall precipitation. The best 5-factor model 

included May minimum temperature, February maximum temperature, June maximum 

temperature, cumulative July precipitation and cumulative fall precipitation to predict loblolly 

pine defoliation events in following year (Table 5.1). The final model revealed that increasing 

summer precipitation and temperature are the best climatic factors that would affect LPD in 

following years. 

5.4. DISCUSSION  

Lecanosticta acicola was the primary pathogen causing loblolly pine defoliation in Alabama. 

This pathogen wasn’t recovered from other infected sites of Louisiana, Georgia, and South 

Carolina and Mississippi (except one site in Greene). Infected loblolly pine trees in Louisiana, 

Georgia, Mississippi and South Carolina didn’t mimic the symptomology of diseased loblolly 

trees in Alabama. Therefore, those sites were not included in the model to predict loblolly pine 

defoliation severity. Temperature has increased and precipitation has decreased in infected sites 

in Alabama. The results indicate that changing climatic conditions in Alabama are likely to have 

an impact on loblolly pine defoliation in Alabama since fungal growth, reproduction and spread 

are associated with increasing temperature (Wyka et al., 2017; Tainter and Baker, 1976). The 

study developed a model and identified that February, May and June temperature and July and 

fall months precipitation are the best predictors of loblolly pine defoliation severity in following 

years. Wyka et al., (2017) reported that increasing temperature and rainfall have been shown to 

drive emergence of white pine needle disease in the northeastern United States. Similarly, a local 

increase in spring precipitation and winter mean temperature are the best predictors to determine 

increase Swiss needle cast severity in western North America (Manter et al., 2005). Moreover, 

increasing overnight temperature and summer and spring rainfall are identified as the driving 

factors to increase D. septosporum severity to lodgepole pine plantations across its native range 

in northeastern British Columbia, Canada (Woods et al., 2005). All these findings supported the 

study findings and emphasized that increasing summer months temperature and precipitation 

provide favorable environmental conditions for L. acicola pathogen to cause loblolly pine 

defoliation disease emergence and outbreak.  

Changing climatic conditions i.e., temperature and precipitation favored the spore development, 

dispersal, and infection potential of needle pathogens (Sturrock et al., 2011). Although it is 

difficult to establish a causal relationship between local biological trends and climate change, a 

mechanistic relationship exists between an observed climate trend and host- pathogen 

interactions (Woods et al., 2005). Wet moist site conditions and poor drainage might have posed 

stress to the trees and increased temperature might have facilitated increased fungal disease by 

increasing fungal growth and reproduction eventually leading to increased pathogen pressure to 

loblolly trees (Hansen, 1999). Since fungal loads, dispersal are correlated to changing 

temperature and precipitation (Manter et al., 2005; Woods et al., 2005; Wyka et al., 2017), 

temperature and precipitation may modulate L. acicola spore development, virulence, and 

infection potential which might have resulted in a recent emergence and outbreak of loblolly pine 

defoliation. Inoculum pressure is the most basic requirement to overcome the host defense 

(Agrios, 2005). Presence of abundant loblolly pine might have allowed the increasing number of  



L. acicola spore development which may have helped the fungus to overcome the defense of host 

tree. A wide geographic distribution of host species favored the potential distribution of fungi 

through air-currents and rain-splash spores (Siggers, 1944). The study concluded that the high 

occurrence of loblolly pine trees coupled with changing seasonal temperature and precipitation 

has driven the current loblolly pine defoliation emergence and outbreak. 

This disease is expected to increase in a broader geographic region and cause tree mortality if 

there are favorable environmental conditions. The uncertainty related to climate change 

associated with loblolly pine defoliation requires regular monitoring, planning, and mitigation 

strategies as well as linking them in forest management policies, and decision making.  

5.5. CONCLUSION  

The study identified the role of temperature and precipitation influence on loblolly pine 

defoliation in Alabama. Warmer and wetter summer and drier spring and fall are likely to favor 

loblolly pine defoliation severity in following years. The high occurrence of loblolly pine 

coupled with increasing temperature and precipitation are at the greatest risks in this region.  

Short-term and long-term changes in climatic conditions can result in a disease outbreak. 

However, it is established that climate change can make trees more vulnerable to damage by 

insects, pests, and pathogens and especially, from those which have not been considered a threat 

due to unfavorable climate. The study requires incorporation of host layer mapping to better 

predict the disease patterns in Alabama. Southern forest managements are based on an implicit 

assumption that management will increase yield. However, this could be contributed to high 

disease occurrence. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

Figure 5.1. Average temperature during loblolly pine 

growing season at 11 infected sites in Alabama 
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Figure 5.2. Cumulative precipitation during loblolly pine growing 

season at 11 infected sites in Alabama 
 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 
Figure 5.3. Mean relative humidity during loblolly pine growing 

season at 11 infected sites in Alabama 
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Table 5.1 Best-fit regression models to predict loblolly pine defoliation severity. 

 
Model, 

variables 

Parameter 

estimate 

SE£ Prob. > t VIF¥ Model 

Prob. > 

F 

Adj. R2 RMSE 

¢ 

AIC€ 

 

5-Factor 

        

Intercept 0.45597 1.31881 0.7355      

Max February T 0.01921 0.00500 0.0023 4.21    

 

Max June T 

 

0.03203 

 

0.01507 

 

0.0550 

 

3.76 

   

 

Min May T 

 

-0.06964 

 

0.00802 

 

<.0001 

 

3.10 

   

Sum July P 0.03583 0.00941 0.0025 4.64 
   

 

Sum Fall P 

 

-0.00838 

 

0.00557 

 

0.1579 

 

4.27 

   

Total model 
   

<.0001 0.8874 0.00113 -62.6345 

 
4-Factor 

       

Intercept 3.14165 0.42606 <.0001 
    

Max February T 0.02228 0.00539 0.0012 4.21 
   

Min May T -0.06716 0.00894 <.0001 3.10 
   

Sum July P 0.02585 0.00920 0.0147 4.64 
   

 

Sum Fall P 

 

-0.01535 

 

0.00507 

 

0.0097 

 

4.27 

   

Total model 
   

<.0001 0.8450 0.00224 -74.789 

 
3-Factor 

       

Intercept 3.07400 0.51974 <.0001 
    

Max February T 0.02529 0.00646 0.0016 4.21 
   

Min May T -0.06785 0.01092 <.0001 3.10 
   

 

Sum Fall P 
 

-0.01305 
 

0.00612 
 

0.0511 
 

4.27 

   

Total model 
   

0.0002 0.7508 0.00845 -66.5523 

 
2-Factor 

       



Intercept 2.81150 0.56158 0.0002 
    

Max February T 0.02623 0.00717 0.0023 4.21 
   

 

Min May T 

 

-0.06697 

 

0.01214 

 

<.0001 

 

3.10 

   

Total model    0.0002 0.6698 0.01132 -57.6458 

 

1-Factor 

       

Intercept 2.75236 0.74780 0.0020     

Min May T -0.03746 0.01209 0.0069 3.10    

Total model    0.0069 0.3749 0.01852 -42.4364 

P=sum precipitation, T=average temperature; £SE=Standard error; ¢RMSE=Root Mean Square 

Error; ¥VIF=variance inflation factor; €AICc=Akaike information criterion. (Seasonal 

temperatures were averaged and precipitation was summed up in the year before defoliation 

ratings of the trees were conducted such as winter (December, January, February); spring 

(March, April, May); mod. spring (May, June, July); summer (June, July, August). 

 


