Resistance of *Pinus taeda* families against *Leptographium* root fungi and assessment of family morphological traits linked to *Leptographium* infection

Amritpal Singh¹, Daniel Anderson¹, Mary Anne Sword-Sayer² and Lori Eckhardt¹

¹Forest Health Dynamics Laboratory, School of Forestry and Wildlife Sciences, Auburn University, AL; ²United States Forest Service, Southern Research Station, Pineville, LA

Pine Decline in Southeastern US

- First observed in 1959 in Talladega
 National Forest
- Sparse chlorotic crowns, excessive cone crop, fine and lateral root deterioration
- Misdiagnosed as little leaf disease

Pine Decline in Southeastern US

- Complex Interactions
- Abiotic and biotic factors
- Silvicultural disturbances
- Insect-fungal complex
- Leptographium spp.

Leptographium spp.

- Anamorphs of genus
 Grosmannia
- L. procerum
- L. terebrantis
- L. serpens
- L. huntii

Pinus taeda L.

- Commercially grown pine species
- 13.4 million ha in the South (45% of all pine plantations)
- 7 million acres in Alabama
- 110,000 jobs and \$30 billon to economy

Loblolly Pine Improvement

- 1.5 billion seedlingsgenetically improved
- Growth rate, wood properties and disease resistance
- Many other diseasesgenetically controlled (Schultz, 1997)
- Virulence of Leptographium spp. tested on pine species (Matusick G, 2010)

Photos-NC State Cooperative tree improvement Program

Objectives

Resistance screening study

- Determine the resistance of *Pinus taeda* families against *Leptographium* spp.
- Characterize the families based on their resistance levels

Nutrition Study

 Assess the family morphological traits linked to *Leptographium* root infection

Hypotheses

Resistance screening study

- Pinus taeda families have variable levels of resistance
- Families can be characterized according to their level of resistance

- The more carbon allocation to the root system, the higher the resistance
- Higher nitrogen levels decrease resistance against *Leptographium* spp.

Rayonier

10-5-RYN(L-5)

7-56-RYN(L-8)

11-1123-RYN(L-12)

7-1037-RYN(L-16)

5-1507-RYN(L-17)

**W-34-RYN(S-2)

**I-09-RYN(S-3)

**K-13-RYN(S-4)

**W-18-RYN(S-5)

Rayonier Regeneration Center Glennville, GA

10-83-AG(L-20)

ARBORGEN

5-1033-AG(L-21)

10-500-AG(L-22)

11-1066-AG(L-23)

*LB-A02-05 10-1027X(L-1)

*LB-G69-09 7-1505 M(L-2)

*LB-A13-09 1-656 M(L-3)

*LB-A12-07 5 204 M(L-4)

7-1040-PC(L-6)

11-1095-PC(L-7)

08-103-PC(L-13)

11-1153-PC(L-14)

05-005-PC(L-18)

**A-05-PC(S-1)

* Not grown at Glennville

** Slash pine

181210-WY(L-9) 41059-WY(L-10) 81516-WY(L-11) 211005-WY(L-15) 111060-WY(L-19)

Resistance screening study

- Twenty eight familiespot planted during first week of January
- Six blocks-840
 seedlings per block
- Growth
 measurements-initial
 and final

- Inoculations-12 weeks after planting
- Six treatments-L. procerum,
 L. terebrantis, L. serpens,
 L. huntii, wound+media
 control and wound control
- Five seedlings per treatment per family per block
- Wound inoculation method (Nevill et al. 1995)

Photos-Yuan Zeng

Hailstorm Damage

- Harvesting-12 weeks after inoculations
- Four blocks harvested
- Data recording-final growth measurements
- Seedling alive/dead

Work done on Project Resistance screening study

- Shoots separated from root system
- Shoots kept in Fast green solution

Work to be done on Project Resistance screening study

- Lesion length
- Occluded vascular tissue
- Biomass studies
- Re-isolation
- Data analysis

Photos-George Matusick

Nutrition Study

Subset of *Pinus taeda* families used

7-1040-PC (L-6)

7-56-RYN (L-8)

05-005-PC (L-18)

10-5-RYN (L-5)

11-1123-RYN (L-12)

08-103-PC (L-13)

11-1095-PC (L-7)

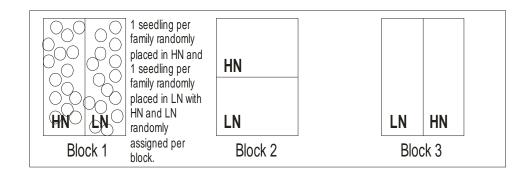
181210 -WY (L-9)

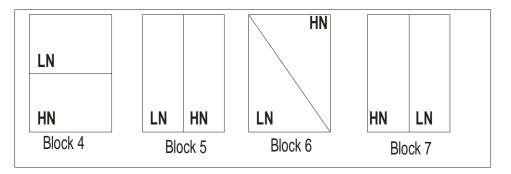
10-500-AG (L-22)

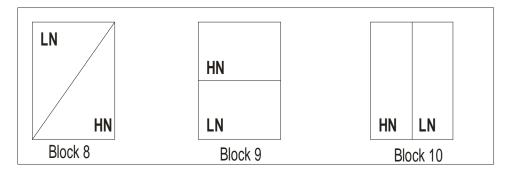
7-1037-RYN (L-16)

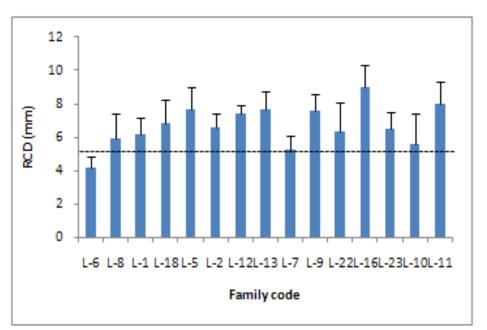
11-1066-AG (L-23)

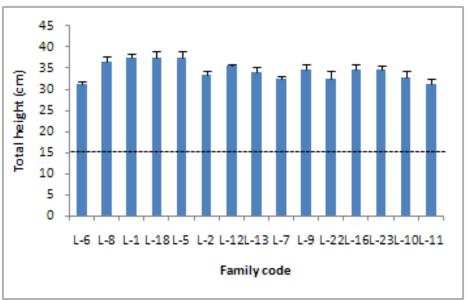
41059-WY (L-10)

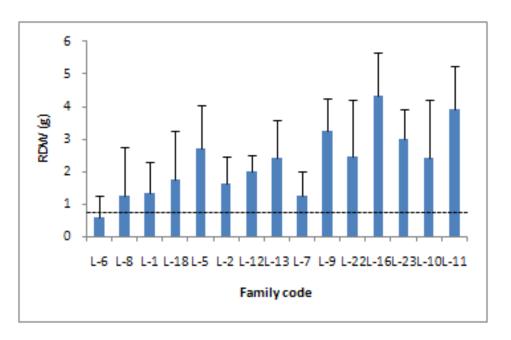

81516-WY (L-11)

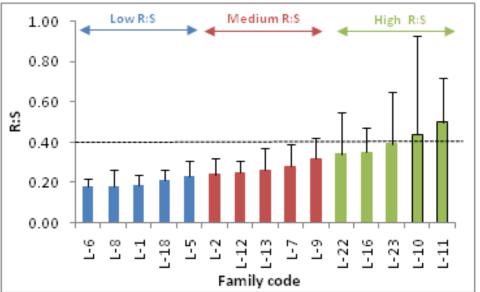

LB-A02-05 10-1027X (L-1)

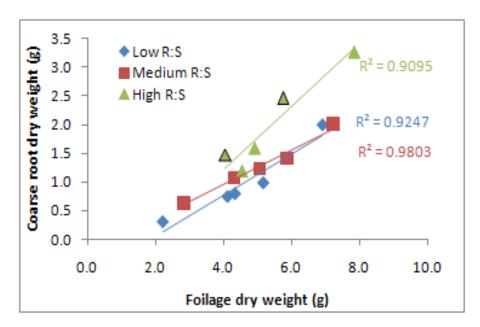

LB-G69-09 7-1505M (L-2)

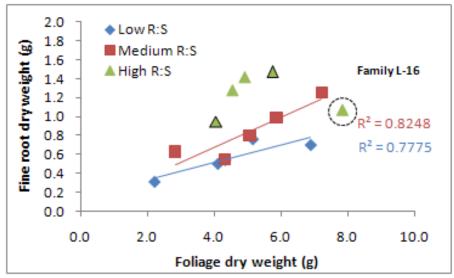

- Fifteen familiestwenty seedlings each
- RCB split plot design-ten blocks,
 30 seedlings/block
- Either high or low nitrogen (HN, LN) applied twice a week






- Ideal seedling quality for loblolly pine
- RCD>5 mm
- Height 15-25 cm
- RDW>0.8 g
- R:S>0.4
 (Duryea and Dougherty 1991)




- Families divided into three groups
- Low, medium and High R:S

- High R:S families are more variable
- As foliage dry weight increases, C allocation to coarse and fine roots increases
- Family L-16 has low fine dry root weight?

- Growth measurementsthree week intervals
- Inoculations-12 weeks after planting with Leptographium huntii

- Foliar Nutrient analysis
- Target N
 concentration LN 1.0%, HN-1.5%
- Ideal foliar P-0.12
- K , Ca & Mg-high
- Micronutrientsadequate

Family	HN/LN	H/L R:S	N(%)	P(%)	K(%)	Mg(%)	Ca(%)
L-8	LN	L	1.05	0.21	1.87	0.22	0.98
L-18	LN	L	1.13	0.25	1.94	0.2	0.92
L-11	LN	Н	1.22	0.21	1.61	0.21	0.88
L-23	LN	Н	1.01	0.22	1.5	0.21	0.93
L-8	HN	L	1.34	0.2	1.59	0.19	0.79
L-8 L-18	HN	L L	1.34	0.2	1.59	0.19	0.79
L-18	HN	L	1.34	0.23	1.84	0.22	1.02

- Lower N in HN attributed to pot mix
- NH4+ adsorbed on exchange sites
- Ca and Mg-cause of Fe chlorosis
- Preventing Fe from being in Fe++ (Ferrous)

- Amendments
- N-increased in HN
- Ca and Mg dropped
- P and K decreased
- Micronutrientsadequate

Nutrient concentration(ppm)								
Initial	N	Р	K	Ca	Mg			
LN	100	30	75	36	18			
HN	275	30	75	36	18			
Amended	N	P	K					
LN	100	18	23					
HN	350	18	23					

Work to be done

- Nutrient water applications-45/54
- Growth measurements-8/10
- Foliage nutrient analysis-six weeks after amendments
- Harvesting-28 weeks after planting
- Total phenolic analysis

Work to be done

- Biomass
- Regression analysis-among the families and within each family
- Relationship between lesion area and variables:
 - Nitrogen
 - Phenolic concentration
 - Morphological traits
 - Growth rate
- Re-isolation

Expected Outcomes

Resistance screening study

- Resistant families
- Categorize families according to level of resistance

- High nitrogen-decreased resistance
- More carbon allocation-higher resistance

Impacts of research

- Family x site planting decisions for land managers
- Tree breeding programs
- Gene tagging and deployment

Acknowledgements

Dr. Lori Eckhardt : Major Professor

Dr. Scott Enebak : Committee Member

Dr. Kathy Lawrence : Committee Member

Dr. Mary Anne Sword-Sayer: Research Plant Physiologist

SRS Pineville, LA

Dan Anderson : Forestry Technician

Rebecca Kidd : Research Associate

Forest Health Dynamics

Laboratory : Graduate and

Undergraduate Students

Forest Health Cooperative

Questions