Forest Health Cooperative School of Forestry and Wildlife Sciences Auburn University

Silviculture Disturbances Effect on Root-feeding Bark Beetle Population Dynamics and Incidence of Ophiostomatoid Fugal Species in Loblolly Pine Stands

Yuan Zeng, Rebecca Kidd and Lori Eckhardt

Introduction

 Loblolly pine (*Pinus taeda*) is a native pine species to the southern U.S.

Introduction

- Loblolly pine decline (LPD) is caused by interaction of environmental, insect, and pathogen agents (Eckhardt and Menard, 2007).
 - 1. Slope and aspect
 - 2. Sandy, well-drained soils
 - 3. Leptographium spp.
 - 4. Root-feeding bark beetles and weevils

Introduction

- Declining loblolly pines appear to be more vulnerable to attack by SPB than healthy trees in the southeastern U.S. (Otrosina et al.,1997; Hess et al.,1999).
- Higher numbers of Scolytidae following anthropological disturbances were reported in longleaf pine (*P. palustris*) stands on the Coastal Plain of Alabama (Campbell *et al.*, 2008).

Study I

Thinning effect on root-feeding bark beetle populations.

Study II

Harvesting (site preparation & disturbances) effect on populations of root-feeding bark beetle.

Study III

Factors associated with incidence of Ophiostomatoid fungal species contributing to LPD.

Nine Forest Health Monitoring (FHM) research plots

Fig 1. Plot Layout in Each Selected Plot

Insect Sampling (for 1 year pre- & 1 year post treatment)

Fig 2. Three Different Traps

- Crown Evaluation Measurements
 DBH, crown density, crown transparency, etc. were measured in each subplot.
- Site Characteristic Measurements
 Basal area, aspect, landform, topographic position were record in center subplot.

Fig 3. Crown Evaluation

- Three loblolly pines per subplot were chosen randomly.
 From each tree, two lateral roots were sampled to 1m from the base horizontally.
- Twelve trees per plot were sampled pre-treatment.

Fig 4. Root Sampling

 Two roots per stump were sampled, three stumps per center subplot in CC plots.

Fig 5. Stump Sampling

Results

Insect Species Captured

Dendroctonus terebrans	Pityoborus comatus
Dendroctonus frontalis	* Xylosandrus crassiusculus
Ips avulsus	Xylosandrus compactus
Ips grandicollis	Xylosandrus germanus
Hylastes porculus	* Xylosandrus mutilatus
Hylastes salebrosus	Xyleborus atratus
Hylastes tenuis	Xyleborinus saxesenii
Orthotomicus caelatus	Gnathotrichus materiarius
Pachylobius picivorus	Monarthrum mali
Hylobius pales	Monarthrum fasciatum
Pissodes nemorensis	* Dryoxylon onoharaensum
Xyleborus pubescens	Trypodendron scabricollis
Xyleborus ferrugineus	

^{*} Exotic Species

Results

Insect Captured for Total

Preliminary Results

Thinning Timelines

Study Sites	3rd Row Thinning
SS	Nov. 20th, 2009-Feb.24 th ,2010 (plot 2)
	Oct. 9 th -Dec. 17 th , 2010 (plot 1 & 3)
RAY	Nov. 19th,2009-Dec. 4th, 2009
WEY	July 25 th , 2010-Aug. 10 th ,2010
	(Plot 2 has not been thinned)
WV	July 21 st , 2010-Aug. 5 th , 2010

Hylastes salebrosus in RAY

Hylastes salebrosus in SS

Hylastes salebrosus in WEY

 $p_{\text{(control)}} = 0.8917$, $p_{\text{(thinning)}} = 0.0280$ $\alpha = 0.05$

Hylastes salebrosus in WV

Hylastes porculus in RAY

Hylastes porculus in SS

Hylastes porculus in WEY

Hylastes porculus in WV

Hylastes tenuis in RAY

Hylastes tenuis in SS

Hylastes tenuis in WEY

 $p_{(control)}=0.3545$, $p_{(thinning)}=0.0162$ $\alpha=0.05$

Hylastes tenuis in WV

Summary

- Pre-thinning data shows a spring and fall peak of H. salebrosus and H. porculus, but H. tenuis appears to change frequently from spring to fall.
- Populations of all three Hylastes spp. significantly increase after thinning treatment.

Preliminary Results

Harvesting Timelines

Study Sites	Clearcut
F&W	Nov. 19, 2009-Jan. 29th, 2010
SS	Feb. 2010 (plot 9 only)*
RAY	Nov. 19th,2009-Dec. 4th, 2009
WEY	Dec.16th, 2009-Feb.28 th ,2010
WV	Dec.9 th ,2009 (WV9);
	Jan.7th, 2010(WV7,8)-Jan,22 nd ,2010

Hylastes salebrosus in RAY

Year 1: $p_{(control)}=0.6548$, $p_{(clearcut)}=0.6491$ $\alpha=0.05$

Hylastes salebrosus in FW

Year 1: $p_{(control)}=0.0101$, $p_{(clearcut)}=0.6574$ $\alpha=0.05$

Hylastes salebrosus in SS

Year 1: $p_{(control)}$ =0.5150, $p_{(clearcut)}$ =0.3152 α =0.05

Hylastes salebrosus in WEY

Collection Week

Year 1: $p_{(control)}$ =0.2641, $p_{(clearcut)}$ =0.2005 α =0.05

Hylastes salebrosus in WV

Year 1: $p_{(control)}=0.6920$, $p_{(clearcut)}=0.0391$ $\alpha=0.05$

Hylastes porculus in RAY

Year 1: $p_{(control)}$ =0.2430, $p_{(clearcut)}$ =0.9727 α =0.05

Hylastes porculus in FW

Year 1: $p_{(control)}$ =0.9167, $p_{(clearcut)}$ =0.0830 α =0.05

Hylastes porculus in SS

Year 1: $p_{(control)}=0.0735$, $p_{(clearcut)}=0.0006$ $\alpha=0.05$

Hylastes porculus in WEY

Year : $p_{(control)}$ =0.7963, $p_{(clearcut)}$ =0.4511 α =0.05

Hylastes porculus in WV

Null Hypothesis: Clearcut will decrease root-feeding bark beetle populations in LP stands.

Hylastes tenuis in RAY

Year 1: $p_{(control)}$ =0.6466, $p_{(clearcut)}$ =0.2081 α =0.05

Hylastes tenuis in FW

Year 1: $p_{(control)}=0.0448$, $p_{(clearcut)}=0.3200$ $\alpha=0.05$

Hylastes tenuis in SS

Year 1: $p_{(control)}$ =0.0329, $p_{(clearcut)}$ =0.1820 α =0.05

Hylastes tenuis in WEY

Year 1: $p_{(control)}=0.7153$, $p_{(clearcut)}=0.0167$ $\alpha=0.05$

Hylastes tenuis in WV

Year 1: $p_{(control)} = 0.0288$, $p_{(clearcut)} = 0.2705$ $\alpha = 0.05$

Summary

Study Site	Root-feeding Bark Beetle Species				
	H. salebrosus	H. porculus	H. tenuis		
RAY	Negative	Negative			
F&W			Positive		
SS		Negative			
WV					
WEY					

^{&#}x27; indicates no response to harvest treatment

Plot	Average Length (inch)	Average Diameter (inch)	Percentage of how many roots had galleries	Range of Exit holes	Percentage of how many roots had insects present	Percentage of stain fungus observed
FW7	14.4	1.5	50%	0-22	50%	0
FW8	15	1.5	33%	0-23	17%	17%
FW9	10.6	2.0	67%	0-28	33%	17%
RAY7	12.5	1.5	50%	0-5	33%	0
RAY8	12.4	1.4	17%	0-2	0	0
RAY9	12.9	2.5	50%	0-19	50%	17%

Plot	Average Length (inch)	Average Diameter (inch)	Percentage of how many roots had galleries	Range of Exit holes	Percentage of how many roots had insects	Percentage of stain fungus
					present	observed
WEY7	16.7	1.6	33%	0-4	33%	17%
WEY8	13	1.8	50%	0-8	50%	50%
WEY9	12.7	1.8	83%	0-4	50%	50%
WV7	13.8	2.5	50%	0-7	33%	17%
WV8	11.1	2.2	33%	0-7	17%	0
WV9	12.3	2.2	67%	2-11	33%	0

Study Site	Treatment	L. terebrantis	L. serpens	G. huntii	L. procerum	O. ips
F&W	Thinning	2.8	0	2.8	11.1	0
	Control	5.6	0	33.3	16.7	0
	Clearcut	5.6	2.8	0	11.1	0
RAY	Thinning	0	0	2.8	11.1	0
	Control	2.8	5.6	8.3	13.9	0
	Clearcut	8.3	2.8	2.8	16.7	0
WEY	Thinning	0	30.6	19.4	38.9	2.8
	Control	2.8	0	8.3	11.1	0
	Clearcut	2.8	0	0	8.3	0
WV	Thinning	19.4	8.3	8.3	22.2	2.8
	Control	13.9	0	5.6	11.1	5.6
	Clearcut	11.1	2.8	5.6	36.1	13.9
SS	Thinning	13.9	0	0	11.1	2.8
	Control	0	0	0	2.8	0
	Clearcut	5.6	0	0	5.6	0

Correlation for Fungal incidence and slope, insect captured, aspect and convex in all site

Study Site		Slope	Mean Insect	Aspect	Convex
	FI	0.19657	0.71486	-0.1515	0.38332
F&W	P-value	0.6122	0.0304	0.6972	0.3085
	FI	0.17815	0.58663	-0.17498	0
RAY	P-value	0.6465	0.097	0.6525	1
	FI	0.0816	0.27913	-0.07096	-0.02003
WV	P-value	0.8347	0.467	0.856	0.9592
	FI	0.57253	-0.05201	0.1823	0.28554
SS	P-value	0.1071	0.8943	0.6388	0.4564
	FI	-0.20743	-0.75827	-0.36728	
WEY	P-value	0.5923	0.0179	0.3309	

Fungal incidence in RAY's thinning and control plots

$$p_{\text{(control)}} = 0.1046, p_{\text{(thinning)}} = 0.0022 \quad \alpha = 0.05$$

After one year thinning, the fungal isolation in RAY plots increased compared to pre-treatment data.

Acknowledgements

- Dr. Eckhardt
- Dr. Loewenstein
- Dr. Held
- Rebecca Kidd
- Graduate Student & Undergraduate Student workers

Acknowledgements

Rayonier

Questions?