Microbial Communities in Cogongrass (*Imperata cylindrica*) Invaded and Non-Invaded Commercial Loblolly Pine (*Pinus taeda*) Stands

Adam Trautwig¹, Lori Eckhardt¹, Nancy Loewenstein¹, Jason Hoeksema², and Emily Carter³

¹School of Forestry and Wildlife Sciences, Auburn University, Auburn, Alabama ²Department of Biology, The University of Mississippi, Oxford, Mississippi ³USDA Forest Service, Southern Research Station, Auburn, Alabama

Agenda

- Background
- Methods
- Results
- Questions

Cogongrass in Southeastern U.S.

- The 7th worst weed in the world
- Introduced from Japan in 1912 and 1920
- Produces vast rhizome networks

Exudates limit growth of plants and symbiotic fungi

Cogongrass in Southeastern U.S.

Cogongrass in Southeastern U.S.

Mycorrhizae Role in Plant Development

- Ubiquitous group of organisms
- Pinus is predominantly ectomycorrhizal
- Are credited with increased nutrient absorption, disease resistance, and decreased predation

Hypotheses

- Percent colonization of mycorrhizal fungi will be lower in cogongrass invaded stands
- Vegetation will be less diverse in cogongrass invaded areas
- Nitrogen, phosphorus and potassium will be found at lower abundances in cogongrass invaded plots
- Base cations will be found at lower abundances in cogongrass invaded plots
- Soil moisture will be lower in plots invaded by cogongrass
- Microbial biomass (C:N) will be lower in plots invaded by cogongrass

The Westervelt Company

The Westervelt Company

Site Conditions

	Cogongrass absent			Cogongrass present				
Plot	N1	N2	N3	P1	P2	C1	C2	C3
Cogongrass cover 2011	0	0	0	0	86	94	97	64
Cogongrass cover 2014	0	0	0	22	12	92	97	53
Age	16	16	22	21	21	16	16	22
Basal Area (m².Ha ⁻¹)	20.9	21.6	24.8	25.3	25.3	21.6	20.9	24.8
Trees Per Acre	227	244	266	243	243	244	227	266
Stocking Percentage	70		80		80	70		80
Annual Precipitation (mm)	1677							
Urea	2010		2007		2010		2007	
Diammonium phosphate application	2006							
Thinned	2009		Prior to 2006		2009		Prior to 2006	
Burned	Х		Cool season, 2009		Х		Cool season, 2009	

Materials and Methods

- Mycorrhizal roots were collected with 72-5 cm x 60 cm soil cores (November 2013 and May 2014)
- Microbial biomass was collected by taking four soil samples from each site with a shovel (April, July and October 2014 and January 2015)
- Soil nutrients were collected with 4-5 cm x 60 cm soil cores (November 2011)

Materials and Methods

- Roots will be separated from soil cores
- Amount of fine root recovered is measured
- Percent colonization of mycorrhizal fungi

Soil Core In Increments

Materials and Methods

- Determine microbial biomass C and N present in each site
- Measure soil moisture

Recovered Fine Root Length

Percent Colonization of Mycorrhizal Fungi

Plant Diversity Related to Cogongrass Abundance

Abundance of N, P and K in the Top 10 cm

F_(3,16)=6.05 p=**0.006**

Abundance of Potassium in the Top 10 cm

F_(1,18)=17.23 **p<0.001**

Abundance of Base Cations in the Top 10 cm

 $F_{(3,16)}$ =2.21 p=0.12

Abundance of Sodium in the Top 10 cm

F_(1,18)=5.80 **p=0.03**

Soil Moisture in Top 10 cm

Soil Moisture in Top 10 cm of Soil in January

 $F_{(2,29)}$ =8.61 p=**0.001**

Microbial Biomass C:N ratio in Top 10 cm

Microbial Biomass C:N ratio in Top 10 cm in July

F_(2,29)=14.89 *p*<**0.001**

Conclusion

- Seasonal differences observed in recovered fine root length and percent colonization of mycorrhizae
- Some nutrients are found in different abundances
- Significant difference in microbial biomass and soil moisture

Acknowledgements

- Funding: Forest Health Cooperative
- Committee members
- Dr. Ryan Nadel
- Jeff Chieppa
- Cody Hartzog
- Andrea Cole
- Pratima Devkota
- Tessa Bauman
- The Westervelt Company

- Dr. Graeme Lockaby
- Robin Governo

Questions?

Source: http://www.deemy.de