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Condensed matter physics

® Quantum condensed matter physics:

® Concerned with situations where quantum physics and many-body
interactions play a key role to create new physical phenomena.

® Topological defects; Phase transitions; Hall effect; Localised states:
Thouless, Duncan, Haldane, Kosterlitz, Anderson.

® Mathematical models:

® Systems of particles;

® Hamiltonians; Tight-binding model coupled with nearest-neighbour
approximation;

® Mathematical analysis: Fefferman-Weinstein, Ablowitz, Frohlich,
Mayboroda, Zworski, .. ..
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Tight-binding approximation

® Schrédinger equation: <Hat + V)W = EV; Hay = >_; H;; Hj: Hamiltonian of

the single atom i, V: potential describing the interactions between the atoms;
E: energy.

® Y: sum over atomic wave functions

ZZa 0

(). ; ; e | ; (n)
¢;’: atomic wave function on the site i corresponding to the energy e; " at the

nth atomic level.

® Assumptions: ¢$") = qf)(”)(x — z;); z;: position of the atom i,
HJ-QE") = ef")gbgn)&-j; f(,b(”)(x — z;)plm) (x — zj) dx = §;j0nm.
(n)

® Schrédinger equation: matrix equation for the amplitudes a;
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Tight-binding approximation

® Consider only one atomic level for each atom:

eja; + Z aj / V(x)p(x — z)p(x — z;) dx = Ea;;
J

=Vj;

ej: atomic energy level on the site i and Vj;: matrix element of the Hamiltonian
between the atomic sites i and j.

® Tight-binding model coupled with a nearest-neighbour approximation: Vj; =0
and Vjj =0for |i —j| >1

er V2 ar a
Vor e Vo3 a a
=E
Vnin—1)  en ay an
=Hyp
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Subwavelength physics

® Subwavelength physics
® Concerned with wave interactions with subwavelength structured
materials.
® Manipulate waves at subwavelength scales;
® Subwavelength signal manipulation: revolutionising nanotechnology;
applications in wireless communications, biomedical superresolution
imaging and quantum computing.
® Physics and engineering literature: Tight-binding models.

® Mathematical Models:

® Systems of subwavelength resonators; PDE models; Capacitance
matrix approximations; Strong and long-range interactions in
subwavelength resonator systems.

® Transpose demonstrated quantum phenomena to classical waves at
subwavelength scales.

® First principle derivations from PDE models with long-range interactions.

® Mathematical theories for metamaterials: micro-structured materials with
unusual properties.
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Lecture |: Capacitance matrices and
formulations
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Capacitance matrix of a finite system

® Capacity of D C R3, bounded, connected domain with C15,0 < s < 1,

oV
boundary: Capp ::/ |IVV]2dx = —/ —| do;
R3\D op Ov |,
b —
AV =0 in R3\ D,
V=1 on 0D,

V(x)=0(]x|7!) as |x| = co.

® D =D;U---UDy; disjoint; ‘

.
AV =0 in R3\ D,
Vi = §j on 9D;, . ‘
WO ko @

as |x| — oo;

do.

® (Capacitance matrix of D: Cj; := / VV;-VV;dx = /
Jr3\D oD, dl/
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Capacitance matrix of a finite system

® C: symmetric; positive definite;

® Ci<Oforany 1 <i#j<N,;

® ( strictly diagonally dominant:

Cii > Z|CU| forany 1 <i <N,
J#i
® C: nonsingular Minkowski-matrix = C~!: Minkowski-matrix; principle minors of
C: positive.
® Dilute expansion: D; = eB; + zj,e — 0:
Cii = eCapg, + O(e3),

62Cap3’_ Caij

Cj=— +0O(83), fori#j;

Ar|z; — zj|
® Decay property for N large enough:
1
G|l L ——n—.
Gl 5 dist(D;, Dj)

* = CI.E.N) < C,.S.NH); For i = j = diagonal capacitance coefficients increase when

adding additional resonators.
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Capacitance matrix of a finite system

® Parity-symmetric system: Each resonator D; can be uniquely associated to
another resonator D; (possibly with i = j) s.t. PD; = Dj; P(x) = —x.

o — C,',' = Cﬂ

® N=2 Ci=Cp,C2=Cy;

<C11 C12>
C= ;
G (i

® = eigenvalues of C: Ci; + Cip and Ci3 — Cyp; associated eigenvectors:

(1? 1)T$ (—1, l)T
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Capacitance matrix of an infinite, periodic system

® d;: dimension of periodicity of the lattice. d: dimension of the ambient space.

® Three different cases: 0 @ @
® d—d; = 0: crystal; OQ OQ OQ
® d — d = 1: screen;
® d—d = 2: chain.

® A: periodic lattice; Y: fundamental domain; A*: dual lattice of A; Brillouin zone
Y* = (R% x {0})/A*; 0: zero-vector in RI=%; x = (x;, x0).

® Periodically repeated ith D; and the full periodic structure D:

N

= D,-+m, D= D,‘.
i=1
i=

meA
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Capacitance matrix of an infinite, periodic system

® Square lattice and corresponding Brillouin zone:

3
3

QXD O
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Capacitance matrix of an infinite, periodic system

® f(x) € L2(RY): a-quasiperiodic, with quasiperiodicity o € Y*, if e~ 1 *f(x):
N-periodic;

® Floquet transform of f € L2(RY):

Ufl(x,a) ==Yy f(x —m)e ™™ x,a € RY.
men

® U[f]: a-quasiperiodic in x and periodic in a.

® Floquet transform: invertible map U : L2(R?) — L?(Y x Y*), with inverse given
by

U tgl(x) =

1
\v*|/y g(x,a)da, x €RY,
)y

g(x, a): extended quasiperiodically for x outside of the unit cell Y.
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Capacitance matrix of an infinite, periodic system

® Quasiperiodic capacitance matrix for o € Y*, o # 0:

Ci? = VV>.VVrdx, i,j=1,...,N;
JY\D
[ ]
AVE =0 in Y\D,
VI»(Y = 5’] on aDJ,
Ve (x+ 1) = el* Ve (x) VIEN,
Va(x) =0 as |xop| — oo,

with x = (x;, x0).
® (C% : Hermitian; positive definite.
® Dilute expansion: D; = eB; + zj,e — 0O:
eima

Cit = eCapg, — (Capg,)? Z ar|m] +0(e),
meN, m#0 Tm

= +O(S3), fori#].

e = —ezCapB.CapB,Z _—
Y i T e Amim + zi — z]
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Capacitance matrix of an infinite, periodic system

® Parity-symmetric system: In Y, each resonator D; can be uniquely associated to
another resonator D; (possibly with i = j) s.t. PD; = Dj; P(x) = —x.

* = CI.?:CJ?.

* N= 2, A = Css, C = G5y = eigenvalues of C*: Cfy + |G| and Cfy — [C];
associated eigenvectors:

(e, 1)1, (=€, 1) T el% = CR/|CR;

‘/—)%
00 ®8® 00-

ast. C3% #0.
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“Real-space” capacitance matrix

® (C%: "dual-space” representation of the infinite periodic system.

® Inverse Floquet transform =- “real-space” capacitance matrix at m € A:

~ 1 .
m __ o _—ia-m ;o
U7|Y*|,y*cije da, 1<i,j<N.

® (: infinite matrix that contains all the 6’&” coefficients, for all 1 < j,j < N and

all me A:
. AEO El 22 §3
¢=| i ae
. Cc7?2¢ct ¢cv ¢t
. c3c2cteo
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Convergence of capacitance coefficients

L 9g 9g 95 95 95D
On@-nO.pn® .0 co v
«
Oy 9g 9 9 9o CtaeY
.0 . 0. )0 . O . quasiperiodic capacitance
matrix
OD OD OD OD OD
@ ®uf) @) ® - | .
: : nverse Floquet transform
@ o, O ¢
© Q‘ ) D 5] Q Df(r) real-space capacitance
-0 o =l matrix
@D @D @D
"®.® .y ® .
@@ @© @®
®-0®.)®.
r Ci(r),r € (0,00) G(r),r € (0,00)
finite capacitance truncated capacitance
matrix matrix
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Convergence of capacitance coefficients

® Convergence of capacitance coefficients: For fixed m,n € A, as r — oo,
lim C™(r) = C™ ",
r—o0 f ( )

* |(Ce)Yy — 6101| for increasing size r of the finite structure: algebraic
(d; < d)/exponential (d = d;) convergence.
® d; < d: long range interactions in the “spare” dimensions.

107!

H H
9 2

Relative error

—
=)

105 . .
10" 10t 10%
Size of structure r

Q000000
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Convergence of capacitance coefficients




Convergence of capacitance coefficients

® (C;: Toeplitz matrix of an essentially bounded symbol;
® As r — 0o, the matrices C; and C; are asymptotically equivalent:
® |im |G — G| =0;
r— oo
® ||G|l> and || Gi||2 are uniformly bounded as r — oo.

® For an n x n matrix M = (mj;), normalised Frobenius norm:

n

1
M= = 3 Jmy.

ij=1

® Asymptotically equivalent matrices have identical eigenvalue distributions as
their sizes tend to infinity.
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Periodic capacitance matrix

® Fix ag: |ag| =1; V& — V0 as a = |a|ag — 0

AV? =0 in Y\ D,
Vio =4y on 9D;,
VP (x1,%0) is A-periodic in x;,

VO(x1,x0) — £V as xg — Foo;

o V;o constants; may depend on «p.

® Periodic capacitance matrix:

C,?:/ vV v VP dx.
Y\D

® (O real, symmetric, positive semi-definite matrix with one vanishing eigenvalue.

® (0 independent of oy for parity symmetric dimer of resonators.
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Asymptotic perturbation theory of Gohberg-Sigal

® A(z) finitely meromorphic of Fredholm type at zp:
Alz) = > (z— ) A;
jz=s
A_j,j=1,...,s: finite-dimensional ranges and Ap: Fredholm.

® zy: normal point of A(z) if A(z): finitely meromorphic, of Fredholm type at z,
holomorphic, and invertible in a neighborhood of z except at zj itself.

® V: simply connected bounded domain with rectifiable boundary V; A(z):
normal with respect to V if A(z): finitely meromorphic and of Fredholm type
in V, continuous on AV, and invertible for z € V, except for a finite number of
points of V which are normal points of A(z).
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Asymptotic perturbation theory of Gohberg-Sigal

® z: characteristic value of A if there exists a vector-valued function ¢(z) with
values in B s.t.

(i) ¢(z): holomorphic at zy and ¢(z) # 0;
(if) A(z)¢(z): holomorphic at z and vanishes at this point.
® §(z): root function of A(z) associated with the characteristic value z.

® There exists m(¢) > 1 and a vector-valued function ¢ holomorphic at z s.t.

A(2)$(2) = (z = 20)™D(2),  1(z0) # 0.

® m(¢): multiplicity of the root function ¢(z).

® ¢ € Ker A(zp); rank(¢p): maximum of the multiplicities of all root functions
@(z) with ¢(z0) = ¢o; o : eigenvector.
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Asymptotic perturbation theory of Gohberg-Sigal

® Assumptions: n = dim Ker A(zp) < +o0; ranks of all vectors in Ker A(z): finite.

® Canonical system of eigenvectors of A associated to zp: system of eigenvectors

&, j=1,...,n,st forj=1,...,n, rank(¢}): the maximum of the ranks of all
eigenvectors in the direct complement in Ker A(z) of the linear span of the

vectors @3, .. ., %_1.

® Null multiplicity of the characteristic value zy of A:

A(z0)) : Zrank 0’)

® |f zp: not a characteristic value of A, we put N(A(z)) = 0.
® Multiplicity of zp:
M(A(20)) = N(A(z0)) — N(A(z0) ")

® zp: characteristic value and not a pole of A(z) = M(A(z)) = N(A(z));
M(A(z0)) = —N(A(z0)~1) if zp: pole and not a characteristic value of A(z).
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Asymptotic perturbation theory of Gohberg-Sigal
® A(z): normal with respect to OV and z;, i =1,...,0, are all its characteristic
values and poles in V;

® Full multiplicity M(A; 8V) of A(z) for z € V: number of characteristic values of
A(z) for z € V, counted with their multiplicities, minus the number of poles of
A(z) in V, counted with their multiplicities.

® Generalised argument principle: A(z): normal with respect to 9V f(z):
holomorphic in V and continuous in V;

1 ' . d 7
ot [ F@AE) ARz = > MIAG)(z).

27

® Generalised Rouché’s theorem: A(z): normal with respect to dV; S(z): finitely
meromorphic in V' and continuous on 9V s.t.

IA@)IS@ s <1 zedV.
= A+ S: normal with respect to 0V and

M(A;0V) = M(A+ S; V).
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Abstract capacitance matrix

® 7, H’ : Hilbert spaces; £(H,H): space of bounded linear operators from # into
H'

® Operator-valued function w — A(w,d) € L(H,H');

® A(w,d): Fredholm of index zero, holomorphic with respect to w and 4.

® A(w,0) has a characteristic value w = 0 of multiplicity 2N, admitting the

pole-pencil decomposition:

K

N
A(w,0)7t = = +R(w), for K=Y (&, )V
i=1

® Ker A(0,0) = span{V¥;}, Ker A*(0,0) = span{®;}; R: holomorphic for w in a
neighbourhood of 0; A*: adjoint of A.

® A(w,d), for small but nonzero ¢, satisfies
A(w, d) = A(w,0) + L(w, d),

for some operator L satisfying (in corresponding operator norm) ||L] = O(9)
uniformly for w in a neighbourhood of 0.
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Abstract capacitance matrix

® Generalised Rouché’s theorem = A(w, §): 2N characteristic values in a small
neighborhood of 0.

® Asymptotic formulas (in ) of the characteristic values: A(w, d)[®] = 0.
® Multiplying with A(w,0)™1, we have

0 = A(w, 0) T A(w, §)[®] = A(w,0) ! (A(w, 0) + L) [¢] = (/ + % + RL) b,

® Defining B(w, §) = w?R(w)L(w, ) =
(w?l + KL+ B) [#] = 0.

® Characteristic values of A(w,d): determined by a nonlinear eigenvalue problem
since £ and B depend on w.

® For small w, we have ||B|| = O(w?§) uniformly for w and § around 0;

® L =/Lo+L, Lo: independent of w and £ = O(wS).
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Abstract capacitance matrix

® Characteristic values pf A(w, d) in a small neighborhood of 0 approximated by +
the square roots of the eigenvalues of the finite-rank operator —KLg;

® Restriction of —K L to Ker.A(0,0) given by the N by N matrix:
Cij = —(®i, Lo[V])-

® Characteristic values of A(w, 9):

wp = £/ A + O(9);

® )\, eigenvalues of C.

o w, = O(/5) since ||Lo|| = O®).

Subwavelength physics Habib Ammari



Abstract capacitance matrix

® Pole-pencil decomposition:

K+w7€()

w?

A(w,0)71 + RO (w),
e R(: independent of w; R?): holomorphic in w in a neighborhood of 0.

® Assume R
A(w,0) = A(w,0) + L(w,d), L=Ly+L;

* ||| = O(5), 2] = O(w?§) uniformly for w in a neighbourhood of 0.
° =
(w?1 + KLo +wRW Lo + B) [#] = 0;

® ||B|| = O(w?$) uniformly for w and § around 0 = under the assumption that all
the eigenvalues A\, of C are simple, the characteristic values of A(w, d):

wn = v/ An + (RO Lo[va], va) + O(8%7?);

® v,: normalised eigenvectors associated to the eigenvalues A,.

® Correction term of order § since || Lo|| = O(9).
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Open questions

® Shape derivative of the capacitance matrix C;

® [soperimetric inequalities for tr(C); Capacitance matrix of the Minkwoski sum:
C(thy + (1 —t)Dy),0 <t < 1.

® Equivalent representation of a system of arbitrary shaped resonators by spherical
resonators;

® Algebraic/exponential rate of convergence of the capacitance coefficients as the
size of the corresponding system goes to oco.
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Lecture Il: Subwavelength resonances
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Subwavelength resonances

® Functional analytic approach to characterise a finite system of subwavelength
resonators;

® Discrete approximation to subwavelength scattering and resonance problems in
terms of the generalised capacitance matrix;

® | eading-order asymptotic expressions for both resonant modes and scattered
solutions in terms of its eigenvalues and eigenvectors, which are accompanied by
precise error bounds.

® Integral approach with rigorous justification based on the asymptotic
perturbation theory of Gohberg and Sigal;

® Relate the capacitance matrix formalism to the tight-binding approximation in
condensed matter physics.

M. Fink et al.
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Scattering problem
® D;,Dy,...,Dy CRY d € {23}, NeN: disjoint, connected sets with
boundaries in C15 for some 0 < s < 1.

® v;: wave speed in resonator D;; ki = w/v;: wave number in D;, where
w € R,w # 0,: operating frequency; v and k: wave speed and wave number in
the background medium.

® Scattering problem:

Au+k*u=0 in RY\ D,
Au+k*u=0 inD;, fori=1,...,N,
ul+ —ul-=0 on 9D,
;%+—%_:0 on dD; fori=1,...,N,
u — ujy satisfies an outgoing radiation condition.

® High contrast regime 0 < § < 1:
v,v;i = O(1),6; = O(9), fori=1,...,N.
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Subwavelength resonance problem

® Finite collection of resonators:

@
o

® Subwavelength resonant frequency: Given § > 0, a subwavelength resonant
frequency w = w(d) € C:

(i) there exists a non-trivial solution to the scattering problem with
uin = 0, known as an associated resonant mode;
(i) w depends continuously on § and satisfies w — 0 as § — 0.

Subwavelength physics Habib Ammari



Boundary integral formulation

® Helmholtz Green's function:

—HP @), d=2,

L ekl g3,
4r|x|

G¥(x) = x #0, R(w) > 0.

® Single layer potential S§ : L2(OD) — H!

loc

(RY):
Splel(x) = /8D G¥(x —y)e(y)do(y), x€R?, ¢ e L*D).
® Neumann—Poincaré operator K™ : L2(9D) — L2(OD):
Ko [el(x) = b B%XGW(X —y)e(y)do(y), x€aD, ¢ € L[*(ID).

® Jump relations:

splell, =Sstell_. sl = (4514557 el
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Boundary integral formulation

® Subwavelength resonance problem is equivalent to finding w(d) s.t. w(d) — 0 as
8 — 0 and there exists a non-trivial pair of densities (¢, %) € L2(OD) x L?(8D)

wwa(?)-(3)

* A(w,d): [2(dD) x L2(dD) — H'(dD) x L2(dD):

A, 5) S8 Sk
w,0) = 1 oW, S(1 k,* .
VRS fa(§/+/cD )
o Scatterlng problem: w # 0 s.t. k2 is not Dirichlet eigenvalue for —A on D;,
i=1,...,N;

u() = J4n() T SpIel0),  x €RI\D,
SglWl(x), xeD,

® (¢,7) € L2(0D) x L?(9D) unique solution of

A(w, 6) <¢> (5&> on OD.
v
L4 S(X) =;,x € OD;;

Sslel(x) = SHlRl(x); Ko™ [el(x) = K [¢l(x), x € aD;, ¢ € L2(dD).



Capacitance formulation of the resonance problem

® letd =3; H = L%(D) x L?(0D),H' = H*(dD) x L?>(8D); A(0,0) € L(H,H'):

0 0
w00- (4T )
® Perturbations of Ker.A4(0,0) when ¢ and w are nonzero.
* S :12(0D) — HY(OD) is invertible;
® Ker(—1/+K%") = span{y1, ¢, ..., ¢¥n},
Vi == (Sp) " xon,l;
Xop;: characteristic function of 9D;, for i =1,..., N.

® = A(0,0): N-dimensional kernel = w = 0: characteristic value of A(w,0) of
multiplicity 2/V.
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Capacitance formulation of the resonance problem

® ji,vieRforalli=1,...,N; Symmetry of the set of subwavelength resonant
frequencies with respect to the imaginary axis:

w=a()-()

® Ae L(H,H):

A(UJ 0) - < = k) L‘,(UJ 6) = < 3 k >
) W,k ) ) 1 K 5% i
7%I+’CD 0 0 6(2I+ D )

0 0
£o(0) = <o —3(;/+lc‘,§*)> '
® [I£o]l = O(8); II£ — Lol = O(w?9).
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Capacitance formulation of the resonance problem

® A(w,0)7! satisfies

2

(R = ‘;_| (8B)'Sp.1(8D) " [xan,] (xap;, *);
(RM)pp = = (8D)'8p.1(8B) " [xon,] (xoD; *);

D]
(73(1))21 - (73(1))22 —0.
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Capacitance formulation of the resonance problem

® Generalised Rouché’s theorem = for sufficiently small § > 0, there exist N
subwavelength resonant frequencies wi(9), ..., wn(d) with non-negative real
parts.

® Generalised capacitance matrix:

%4 5;v?

i

|Dj

Cj=—

® (C: capacitance matrix

c,.jzf/a (8p) 'Ixopldo, i j=1,...,N.

i

v1251
|Di

Cc=VCc, V=

VI%I()N
[Dy|
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Capacitance formulation of the resonance problem

® As § — 0, the N subwavelength resonant frequencies (with non-negative real
parts) satisfy the asymptotic formula

wn=+vVAn+0(5), n=1,...,N,

{An:n=1,...,N}: eigenvalues of the generalised capacitance matrix
C € CNXN which satisfy \, = O(6) as 6 — 0.

® v,: normalised eigenvector of C associated to the eigenvalue \,. Then the
normalised resonant mode u, associated to the resonant frequency wy is given,
as § — 0, by

wnio) = 4 55 ) +0), x e B\D,
n Vi - S;n/vi(x) + (9(51/2)7 x € Dy,

SE : R3 — CN vector-valued function given by

Spln](x)

SK(x) = : ., xeR3\ D,
Spln](x)

with ¢; == (S2) " [xap,] fori=1,...,N.
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Capacitance formulation of the resonance problem

® Suppose vi =wvp =---=vyand §1 =dr =--- =3dy. As§ — 0, the N
subwavelength resonant frequencies satisfy the asymptotic formula

wn = VA —iTa+ 02, n=1,...,N;

® )\, forn=1,..., N: eigenvalues of the generalised capacitance matrix C;
® T,
. vE v} CUCu,

Tn =01 " ——5—
" gmv |val3

® (C: capacitance matrix, J the N x N matrix of ones, v, the eigenvector
associated to An; ||x||p := (Z,N:1 |D,-|x,.2)1/2 for x € RV,

® Foreach n=1,...,N, it holds that v/X, = O(61/2) and 7, = O(8) as § — 0.
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Capacitance formulation of the resonance problem

® Single resonator:

Capp V5 i CaupzDv,2 3
= o — 1) O(62);
“r =4 Top YO Bmpp ) O

=Wy =T

® Monopole approximation:
U (x) := (U — uin)(x) = g(w, 8, D)(1 + o(1))uin (0)G*(x); 0¢€ D;
® Scattering coefficient:

Capp

16,D) = —F 5
£ D) = @y 1,

® Damping constant:

_wv+w)Capp (v—w) Sv,Cap?
™= 8mvv, v 87|Dw

® Scattering enhancement near wy,.
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Capacitance formulation of the resonance problem

® Parity-symmetric dimer (with respect to 0):

w1 =V(Ci1 + C12)V,\/S —imd + 0(53/2);
N— ——

=Wyl

wo =/(Ci1 — Ci2)v, V6 +8327 + 167 + 0(55/2);
—_—

=WM,2

® 71, 72: real numbers determined by D, v, and v;;

v

(Ci1 + C2)2.
4y

T =

® wj; and wp: monopole and dipole hybridised resonances of the resonator dimer D.

® wy 1: slightly smaller than wp2; Swi = O(3) while Swp = O(82).
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Capacitance formulation of the resonance problem

® Point scatterer with resonant monopole and resonant dipole modes:

w(x) = g'(w)un(0)G*(x)

monopole

+ Vuin(0) - gH(w)VG*(x) +O(8]x|71),

dipole

* g%w), gt (w) = (gj(w)):

Cc(1,1
gow) = (72)2(1 +0(8Y2)), C(1,1) := Ci1 + Ci2 + Go1 + Coo,
1—wi/w
8= [ B0~ s P,
v aD 7 w?|D|(1 - w3/w?) !

P ;:/ y1(S) " (xap, — xop,)(¥) do(y).
aD
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Capacitance formulation of the resonance problem

® Multipole expansion method + Muller's method: numerical (complex) root
finding method using quadratic interpolants.

® Generalised capacitance matrix approximations: significant reduction in
computational power.

® Subwavelength resonant frequencies of a system of ten spherical resonators:

Real part
0.018 0.02 0.022 0.024 0.026 0.028 0.03
0 S e e
-
3
o
s -0.5
Bl < full multipole method
= ® o capacitance matrix
10
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Capacitance formulation of the resonance problem

® Let d = 2. A system of N subwavelength resonators in R? has N subwavelength
resonant frequencies.

A2,
4b1(faD 1/),-)
V,'25i -[BD,' i In( v/v, 1
T 4k ((faD o) T ! o5, (85)[xon]

blz—siﬂ_,cl :b1(’y—|n2—1—i%);

0 )y
(-AS)B j=w’lnw+ ((1 + ICT] —In v,') — Splvillan, ) w?

(@)

® Subwavelength resonant frequencies: det.A s = 0 (at leading order):
det(.AL(f)é) = O(w*Inw+8w?Inw), asw,d — 0.

S%[willap;
® S2[4;]: constant in D since ¢; € Ker(fél +IC%’*) = 7% =
oD Vi

1/(27)x logarithm of the capacity of D;.

® Two-dimensional analogue of the capacitance matrix:
D[l/) ]‘dD
Jop ¥i
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Comparison between the tight-binding and capacitance
matrix formulations

® Recast the eigenvalue problem for the capacitance matrix C into the
S . 0 C
Hamiltonian form i®/(t) = H®(t); H := ,/ﬁv, (\E \OF .
® Subwavelength eigenmodes need to be almost constant inside the resonators =
taking linear combinations of modes would contradict the almost-constant
nature of the true modes in the resonators.

® Comparison between a true mode and a tight-binding-type approximant:
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Comparison between the tight-binding and capacitance
matrix formulations

® Construct tight-binding approximant in the dilute regime: dense = long-range
interactions cannot be ignored and nearest-neighbour approximation cannot be
used.
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Open questions

® Stability of the resonant frequencies of a system of N resonators under the
removal of one resonator or a small number (compared to V) of resonators. See
https:/ /royalsocietypublishing.org/doi/full /10.1098 /rspa.2021.0765 for the study
of the stability properties of graded arrays of subwavelength resonators.

® Retrieve the properties of the surrounding medium from the subwavelength
resonant frequencies.

® Optimal design of subwavelength resonator systems. See
https://royalsocietypublishing.org/doi/full /10.1098 /rspa.2019.0049 for the study
of large, graded systems.
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Lecture Ill: Effective medium theory for
systems of weakly interacting subwavelength
resonators
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Large systems of weakly interacting resonators

® Effective medium theory for wave propagation in finite but large systems of
weakly interacting subwavelength resonators.

® Below the subwavelength resonant frequency wy; of a single resonator: high
refractive index medium;

® Above wy: diffusive medium.

® Dimers of resonators: double negative effective material parameter medium at
frequencies slightly higher than the dipole hybridised frequency wy o for a single
constituent dimer.

® Subwavelength resonators: ideal building blocks for designing sensors capable of
detecting the presence of small particles such as viruses and nanoparticles.

® Measure of the shifts in the structure’s resonant frequencies, caused by the
perturbations.

® Shift in the resonant frequencies: typically scales in proportion to the size of the
perturbation.

® QOvercome this weakness through the use of structures with exceptional points.
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Large systems of weakly interacting resonators
® Scattering problem:
AuV’ + K20V =0 in R3\DV,

AuM 41 2uN =0 in DV,

uNp —uV|_ =0 on 8DV,
N N
9u - Ou =0 on DV,
ov |, ov |_

uV — uin satisfies the Sommerfeld radiation condition.
® |ntegral representation of u"V:
x) =

Sg’[u‘;N], x € DV,

o ¢V N e 12(9DV):

Skulol = > Skalell,
1<j<n ’

SEM = Y SEl,
i<j<n

H N N 2 N
with ¢;%, Y € L (aDj ).



Scattering problem
® Jump relations = ¢N and N:
AN(w,8)[wN = FN on oDV,

Sk,N _SkN
AN (w,8) = . v ;

Ky y* k,
—3 K5 =05+ KGN

N .
¢N 688;;“

® = in terms of (bj’.V,LZJJN:

aDN

Uin
N 5 aD;
1 Uin
N
oy o1 |ap,
Ap..oy| + | = ;
N u
N )
oN "lopy
N Oujy
9w lapy
v;: outward unit normal at 9D;,i =1,...,N.
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Scattering problem

® Ap,,...py: block diagonal form

My Lip L1
Lo1 Mz Lo3

ﬁl;l,l 5/.\/72 MN
® M;: self-interaction for the j* resonator
kr k
M= 1$DJ ke, 1_SDJ IANE
()
® L;j,i # Jj, encodes the effect of the jth resonator j to the /™" resonator:
. (0 SE,.DJ>
Yo fﬁgi,Dj '
J SE,-,D, : L2(8D;) — L2(0Dy;), L,‘_i,hDj : L2(8D;) — L2(0D;):

0
Vo€ L2(00), Shp Ll =Shlel| . Lholel= 5 Skl -

Subwavelength physics Habib Ammari



Point interaction approximation

® Well-separated resonators Dj’\’ = yjN + sB, corresponding subwavelength resonant

frequency
Capgd
wpm =
1]
U ujln N. field incident on Dj; u N. field scattered from D;.

uP N () = win () + D uP ().
J#i
® Monopole approximation:
s,N in,N, N
" (x) = g(w, 6,sB)G*(x — yM )i N (v]),

i

® = system of linear equations for U%H’N(yiN)'

Im N(yl )+g(w 5 sB ZG y’ _yj ) in,N __ Uin(y,-N);

J#i
N
m (yl ) uin(.)’lN)
M = : ;
ln N(yN) uin(y,l\\/l)
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Large systems of weakly interacting resonators

* M:
M:: = L, i=J
/ g(w76,sB)Gk(yinyjN)7 ’#J
® uN: sum of the incoming wave and all the waves scattered by the different

resonators = point interaction approximation of u"

uN(x) = i (x) + Z (w,8,sB)G*(x — yM) Z (Mfl),jui,,(yjN).

1<i<N 1<j<N
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Large systems of weakly interacting resonators

® (H1): w = O(1), independent of N; 1 — (“’7"”)2 = fo; for some small constant fy.
® (H2): sN = A; A: positive constant independent of N.
® (H3):
{ mini Ly =y 2 N3,
s N 3.

* (H4)3V € CH(Q) s.t. for any f € C%%(Q) with 0 < a < 1,

1 1 1 ~ 1
= 7f’Vf/7v f(y)dy| < —If|lco.a-
12?""”; v =y ) oy — ] Wf(y)dyl < N@\ Il co.

® (H1): deviation of the incident frequency from wp; (H2): resonator volume
fraction; N — +00,5,0 = O(s?) — 0; (H3): size much smaller than the
separating distance; (H4): regularity of the sampling points; (H3)+(H4): hold
for the periodic distribution.
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Effective potential

* Qn=Q\U<i<nBN, V5)

® There exists some macroscopic field u € CH*(Q) s.t.

uM(x) = u(x) for x € Qu := Q\ Ur<j<nB(y, V/5).

® For any € > 0, there exists Ny such that for all N > Np,

N
lu™ = ullcr,0qy) S €

u:

in,N
i

yjN) — u(yjN).

in, 1
8(w,6,5B)G*(x = y/")u (") = L Ae(w, 6, B)GH(x — y)uly").
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Effective potential

® For x € Qy,

u(x) = uin(x) + Z g(w, 9, sB)Gk(x - yjN)uji.n’N(yjN) + o(1).
1<j<N

® N — 400 = Lippmann-Schwinger equation:

ACap ~
o) = (o) + S [ V)6 (x = y)uty) dy.
® Applying the operator A + k? =
ACa ~
(a+ k- OB GO up) =0 in Q.
Bo
AC
o DB > 1 = effective medium with a high refractive index;
0
AC
* — C;pB < —1 = diffusive effective medium.
Bo
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Effective potential

® B: unit sphere; GXeff(x): Green's function in the presence of the resonators at
frequency w.

o
4rs V30
76= B) = 3 (OM\2 | . 0 = -
g(w,9,sB) T (@ iy M7 T M
[ ]
AC:
(A + K = xq C/;I’B V(x))Grett (x) = 8 in R3.
0

® Point interaction approximation =

GReff (x) & GK(x) —4ms >

1<i<N

1
1—(2M)2 4isw

G (x=y") D (M) G ().
j
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Effective potential

® (Gketf(x)): Point spread function; Resolution: determined by the behavior of
the imaginary part of the Green function.

® Helmholtz-Kirchhoff identity:

S(GRert (x)) = k/‘ GG (x =y do(y) a5 R oc.
.

® |(Gkett (x))]| for volume fractions f = 0;1 x 10~4;2 x 10~%;

® Sharp peak over the origin just below wy,: effective refractive index should be
greatly enhanced in this frequency regime.

%10° x10°

1 1 25 1 45
3
5
N L5
9 9
0 0 o
01 0.0 01 0.0 01

Subwavelength physics Habib Ammari




Large systems of weakly interacting dimer resonators

® System of dimers:
DN = UlngNDjN;

o DjN = yjN + sRc,j,vD for 1 <j < N, with yjN: center of the dimer DJN, s:

characteristic size, and R y: rotation in R3 which aligns the dimer DJ.N in the
J

direction djN, djN: vector of unit length in R3.

*O0<s<KLN>L {yN:1<j<N}IC

® (H1)': § = u2s? for some positive number p > 0, w = wy » + as? for some real
number a # p37;

® (H5): 3 matrix-valued function B € C}(Q) s.t. for any f € C%%(Q) with
0<a<l,

1 1 - L
N%(d,w. W)dﬁ.f(y,w)f/ﬂs(y)vy(m).f(y)dy

|yl_j

maX
1</<N

S dellfllcoe.
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Large systems of weakly interacting dimer resonators

1—wiy1/wio’ 2[Dlwm 2 (03 —a)
/ in R3\ Q,
My = . MR
I —NAg'B in Q,

k2 in R3\ Q,
M2 =42 50 \7 ;
ke — Ng°V in Q.
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Large systems of weakly interacting dimer resonators

® Suppose that there exists a unique solution u to
V- Mi(x)Vu(x) + Ma(x)u(x) =0 in R3,

s.t. u— uj, satisfies the Sommerfeld radiation condition.

® = uV(x) — u(x) uniformly for x € Q.

e B: positive matrix with B(x) > C > 0 for some constant C for all x e Q=
w=wpnp+ as? with a < u3771, and sufficiently large A, | — Ag'B and
k? — /\gOV/: negative.

® = Effective double-negative medium.

® For w € [wm,1,wm,2] but away from the dipolar resonance wpy 2, &1 may be
small enough s.t. | — /\glé: positive, while k2 — A§0\7 remains negative =
effective medium with one effective single negative material parameter.
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Large systems of weakly interacting dimer resonators

® Double-negative effective properties of a system of weakly interacting dimer
resonators (DJ!V uniformly distributed on the unit sphere):

effective properties
i
j
i
i
i

4.4 4.6 4.8 5 5.2 5.4 5.6 5.8 6
frequency w
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Exceptional points in non-Hermitian systems

® (: generalised capacitance matrix. We say that a system of N € N resonators
D1, D5, ..., Dy in R? admits an N™-order exceptional point if there exists ~ s.t.

det(C — xI) = (v — x)V,
dimKer (C —~/) = 1.

® Parity—time symmetry: each resonator D; can be uniquely associated to another
resonator D; (possibly with i = j) s.t.

D; = PD;, v,-25; :’T(vfdj);

® Parity operator P : R3 — R3; time-reversal operator 7 : C — C:

P(x) = —x, T(z) =z
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Exceptional points in non-Hermitian systems

® N'_order singularities in C, = design of subwavelength resonant structures with
higher-order resonant singularities.

e Nth-order exceptional point for C = there exist N resonant frequencies
wi,...,wy and associated eigenmodes vy, ..., uy s.t. forany i,j € {1,..., N}

wj ij+0(6), as § — 0,
and for any i,j € {1,..., N} there exists some K € C s.t.
up = KUj + 0(6), as 6 — 0.
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Exceptional points for PT-symmetric dimers
® Parity-time-symmetric system: D; = —D, and v1251 = @

D1 D2

® 26y := atib, V28 :=a—ib, for a,b€R; |b|: magnitude of gain/loss.

® Exceptional points: There is a magnitude of the gain/loss s.t. resonant
frequencies and corresponding eigenmodes coincide to leading order in §.

® PT-symmetry = spectrum of the capacitance matrix to be conjugate symmetric.

0.02

Frequency
=4
2

o
i
i
i
i

-0.01
0 0.2 0.4 0.6 0.8 1

Gain/Loss b %107
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Exceptional points for PT-symmetric dimers

® Subwavelength resonant frequencies and corresponding eigenmodes:
wi=w?+0), u=u?+0(Y?), ass—o,
wlgo) = VA, ufo) = ViSSP + VASY.

® Eigenvalues of C:

N = aCu + (—1)'/22C3 — b2(CE — CB).

® A PT-symmetric pair of subwavelength resonators D; and D,, has an
asymptotic exceptional point of order two with respect to §: There is a set of
material parameters s.t. eigenvalues and eigenvectors of the associated
generalised capacitance matrix coincide.

® |n particular, if
S‘E(v1261)C12

2 2
Cll - C12

S (v36) = b* =

then A1 = X2 and vi = Kv;, for some K € C, where ()\;,v;), i = 1,2: eigenpairs
of C.
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Exceptional points for PT-symmetric dimers

® |f ‘\‘s(v1261) < b* then v/A1, VA2 are real valued and /A1 # Vg;
e |f %(vfél) > b* then v/A1, VA2 are purely imaginary and v/ A1 # V2.

® If b # b*, the eigenmodes u; corresponding to the resonant frequencies w;, for
i=1,2:
U = viSY 4+ v2SY + O(6Y/?),

as § — 0, where
SK[wil(x), x €R3\D,
Sj"u(x) = o
SDI[wj](X)v x € Dj,i=1,2,

1
for j =1,2, with v; = (‘;‘2) being the eigenvectors of C:

1

vi= [ ~CG2 A
m\cu-w) MT Griby
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Exceptional points in the dilute regime

® Higher-order exceptional points: larger systems of resonators.

® Dilute approximation:
N+1
D;=B— (i - TJ“) (e71,0,0).

® §:=|6]<1 6=0(0)vi=0(1)forali=1,...,N.
® 2€Rs.t. RN(v201) = da and assume that a # 0.

® Define Cy as

1 —c —e/2 -+ —e/(N—1)
—e 1 —e co —e/(N=2)
Cg=vi| 2 e
—e/(N=1) —e/(N—2) —¢/(N—3) --- 1
v25;
® V:diagonal; Vi = &+, i=1,...,N.
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Exceptional points in the dilute regime

® ~;: eigenvalues of CY and g;: corresponding eigenvectors. For small € and 4,
Y g d qi P g €ig

4mady;
wi = [ 22004 o5+ 61262,
| Dy

ui(x) =g - S¥ + O(E +6?), i=1,...,N.

Error terms hold uniformly for € and 4 in neighbourhoods of 0.
® An Nth-order exceptional point of Cj: set of parameter values s.t.
det(Cy —xI) = (v —x)V and dimKer (Cy —~I) =1,
for some ~.

® Expand the characteristic polynomial of CY, match the coefficients to those of
(v = x)V, and show that the eigenvectors coalesce.
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Third-order exceptional point

® Real-valued parameters a, b and ¢, s.t. a,b,c = O(1):

V28 = da(1 +ib), v25; := dac, V283 == da(1 — ib),

e Cy
1+ib —(1+ib)e —(1+1ib)e/2
Cy= —ce c —ce
—(1—ib)e/2 —(1—ib)e 1—ib
L]

Characteristic polynomial P(x) of C}:
2
P(x) =x3—(c+2)x*+ (1+b2+2c7 Z(1+b2+8c)>x
2 92 3
—c(1+b%) 1—15 —€ ).

® Exceptional point of order 3: P(x) = (x — )% = x3 — 37x% + 372x — 73, and
dimKer (Cy —~/) = 1.
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Third-order exceptional point

® A PT-symmetric system D of three dilute resonators has an asymptotic
exceptional point of order 3 with respect to € and § at the resonant frequency
w*, which is given as €,6 — 0 by

. 47(3 + ec1) R (v261)
wt =
3|Dy|

+O(8 + 6Y/2%¢),

where c1: real root of the polynomial cf + %{cl — % =0(c1 ~0483...).
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Third-order exceptional point

® A PT-symmetric system of three subwavelength resonators supports an
asymptotic exceptional point of order 3; Left: resonant frequencies of the full
differential problem; Right: approximate frequencies using the dilute
approximation of the generalised capacitance matrix.

o

. .
x10~? %10-2
26 i 5 i

Real part
Real part
1N

N
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-
B
o

B

2
-
&
m

1 x10 3

Imaginary part
o

Gain/Loss 7 Gain/Loss 7
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Higher-order exceptional points

® Higher-order asymptotic exceptional points for N = 4,8, 14:

2

v X
e s
.

g 2
— 0 =
5 S
X

&)

1 2 3 4 5 6 7 8

1 2 3 1
Resonator number i Resonator number i
1
<
&
>
2
<
5]
3
-4
1 23 450678 910111213 14
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Higher-order exceptional points

® Patterns of exceptional points of order 8 and 14 as the gain/loss grows linearly:

o B L 2
- 10 U}:Iql_l 26 g 10 D@
2.5 2 2

2.45
2.4

[
o

Real part
N
=

Real part

)

Imaginary part
Imaginary part
(=]

0 0.5 1 1.5 2 0 0.5 1 1.5 2
Gain/Loss 7 Gain/Loss 7
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Open questions

® PT-symmetry at the macroscale:

® Consider cavities containing many small resonators and use effective
medium theory to show that PT symmetry can be replicated at the
macroscale;

® In https://arxiv.org/abs/2003.07796, it is shown that a cavity of
resonators with ‘fixed sign’ (i.e., all gain or all loss) converges to an
effective system whose material parameters retain this property. It is
also observed that a structure that is PT-symmetric at the
microscale has real-valued material parameters at the macroscale.

® Stability of the exceptional points with respect to errors in the resonator
positions.

® Consider a system of N subwavelength resonators. Tune the material parameters
in order to produce exceptional points of order two, three, four, ...

® No exceptional precision of exceptional point sensor ? See
https://journals.aps.org/pra/abstract/10.1103/PhysRevA.98.023805.
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Lecture 1V: Subwavelength bandgap opening,
Dirac degeneracies, and resonances in the first
radiation continuum
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Subwavelength bandgap opening

® |[nfinite, periodic structure:

N
D™ = D; + m, D= J Di+m, D =D
men i=1
® Resonance problem:
Au+ Kk*u=0 in RY\ D,
Au+ku=0 inDj, i=1,...,N,
ul+ —ul-=0 on 0D,
,-@ — @ =0 ondD;, i=1,...,N,
ov|, Oov|_
u(x;, x0) satisfies the outgoing radiation condition as |xp| — co.
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Floquet-Bloch theory

® f(x) € L2(R?): a-quasiperiodic, with quasiperiodicity a € Y*, if e71¢*f(x) is
N-periodic.

® Floquet transform of f € L2(R9):

U[Ff](x, &) == Z f(x —m)el®™  x a R
meN

® U[f]: a-quasiperiodic in x and periodic in a.
® U L2(RY) — L2(Y x Y*) invertible:

“Ugl(x) = — / do. x € R,
Bz

® g(x,a): extended quasiperiodically for x outside of the unit cell Y.
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Floquet-Bloch theory

® u%(x) = U[u](x, ):
Au® + K2u® =0 inRI\D,

Av* +K2u*=0 inDj, i=1,...,N,
u¥|f —u*|- =0 on dD,
ou® ou®
L %Y 0 onaDpy, i=1,...,N,
ov |, ov

u®(xy, x0) is a-quasiperiodic in x;,

u®(xy, xo) satisfies a-quasiperiodic radiation condition as |xp| — co.

® Spectrum o: parameterised by the spectra o(a), a € Y*, of the Helmholtz
resonance problem, which in turn are known to consist of discrete values

w=w:
oo
o= U o(a), U(a):Uw”’
agY* i=1
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Floquet-Bloch theory

® Band function: o — wl?‘; Collection of band functions: band structure.

® Bandgap: connected component of C\ o. If o real, bandgaps of D: intervals in
R.
® Subwavelength part of the spectrum: resonant frequencies w® — 0 as § — 0.
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Quasiperiodic layer potentials
® Quasiperiodic Green's function:

(A 4+ w?)G¥¥(x,y) Zoo x—y—m)el™® inR7
men

® Poisson's summation formula'

‘Y‘ Z i(g+a)- ZSO(X_ m elm a

qeN* men

® Ifw#|qg+ al,V qg € AN* = Spectral representation:

i(g+a) (x—y)

GYY(x,y)
=i ; P lat ol

® Spatial representation:

Guwa ZG“JX—m y) ima
men

® Convergence: uniformly for x, y in compact sets of R? and w # |g + «f for all
g€ nN*.
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Quasiperiodic layer potentials

® For p € L2(8D).
S5 lel(x) = /BD G (x,y)p(y) doly), x € RY,
® Jump relation:
o(SZv —o,w %
B (= (2314065 )16l se. x€ 0D,

(52 el = [ 20

o 520 [2(8D) — HY(8D): invertible for a # 0.

w(y) do(y).

Subwavelength physics Habib Ammari



Subwavelength bandgap opening

® Square lattice crystal: d; = d, A = Z9, single resonator D € Y = [-1/2,1/2]¢;

® Fora € Y™

® Square lattice crystal:

O O

010

O O

Au® + k*u®* =0 in
Au® +K2u® =0 in D,

utly —u%|==0 on 9D,
6% - 6L =0 on 9D,
ov |, Ov|_

e ¥ Xy® is periodic.

T~ [ Y

O
O

Subwavelength physics
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Subwavelength bandgap opening

® Self-adjoint problem with compact resolvent = nontrivial solutions for discrete
values of w:
0<uwf Swy <-ov g

® Band structure:
[0, moa?xw‘f‘] U [moin w3, maaxwg‘] U [mDEn w3, mo?xw?] U---.
® Representation of Bloch modes:
Sp“l¢l in Y\D,
Sk [yl in D,

¢, € L*(0D);
* = A%(w,d)[V] =0;

= (_,, 50 5 ) v= (%)
T\ (M) 8G (K™ ¢
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Subwavelength bandgap opening

® A%(w,8) € L(H,H1); H = L2(OD) x L2(8D), Hi = HY (D) x L?>(dD).
® Characteristic values of A%(w, 4d):

O0<wf <ws <--v .

® A*(w,d): perturbation of

Su,k, 78()’1(
Aa(w’o) — D o . D .
(;/+(KD Koy 0

® g characteristic value of A%(w,0) iff (wo/v,)?: Neumann eigenvalue of D or
(wo/v)?: Dirichlet eigenvalue of Y\D with a-quasiperiodic boundary conditions
on 9Y.

® 0: Neumann eigenvalue of D = wp = 0: characteristic value for A%(w, 0).

® Asymptotic Gohberg-Sigal theory = Fix aw € Y*. For any ¢ sufficiently small,
there exists one and only one characteristic value w{*(d) in a neighborhood of
the origin in the complex plane to A%(w, §). Moreover, wf*(0) = 0 and w{*
depends on § continuously.
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Subwavelength bandgap opening

® For a # 0 and sufficiently small d,

o dCap, p
wi = ”7|D\ v, +0(8%/?).

—_———

WM«

¢ Cap,p=-— /8 (S5°) xao]

® Formula holds for dj = d = 2 < S5'° : L2(8D) — HY(AD): invertible.
® wye —+0 asa—0.

¢ Dilute regime: Cap, p/Capp — 1 for fixed o € Y* as the size of D goes to
zero.

® Wl = maXe WM, q-

® Subwavelength bandgap opening: For every e > 0, there exists dg > 0 and
w>wf+est.
[w] + €,@] C [maxw{, minws]
«@ «@

for 6 < do.
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Subwavelength bandgap opening

® Band structure of a square array of circular resonators:
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High-frequency homogenisation of the Bloch eigenmodes

® D: symmetric with respect to {x; = 0} for j=1,...,d = Cap, p and w{"
attain their maxima at o* = (7,..., 7).

® For every small € > 0:

Ca‘pu*+€6,D = Cap(y*,D + 62/\% + 0(64)'

L /\g: negative semidefinite quadratic function of &.

® Bloch eigenmode:

a,w . -1
uf = Sy (S5°) " ool + O(612).
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High-frequency homogenisation of the Bloch eigenmodes

® Crystal with period s:

1 X
a/s « als _ o
Wis = gwl U (x) = ug (;) .

® w2 — w2 =0(s?):

uf /) = €95 (X) 4 0(s):

® Macroscopic field el®* satisfies the homogenised equation:

wi—wZN

i(x) =0;

D Xjdidji(x) +
1<i j<d

® Microscopic field: periodic and oscillates at the scale of s.
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High-frequency homogenisation of the Bloch eigenmodes

zr-axis

1-axis




Dirac degeneracies

® Honeycomb crystal and corresponding Brillouin zone Y™*:

M~ M2
. N
_ N
e \\
e ~
P N
- ~
< r >
o 3 e
~ //
~ e
N .
N .
- .
Y1 | - Y2
<
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Dirac degeneracies

® Symmetry assumptions:

® Each resonator: invariant under rotation by 27/3 = D: invariant
under rotation by 7; R : rotation by —27/3 around the origin;
Ri, R>: rotations by —27/3 around x1 and x», respectively; Ro:
rotation by 7 around xo;

® Rix=Rx+h, Rx=Rx+h, Rox=2x—x;
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Dirac degeneracies

® Subwavelength band functions w® = w®(4), j =1,2:

o 5A()1
w = er + O(9),

uniformly for o € Y§'; |D1|: volume of one resonator and )\D‘, j=12
eigenvalues of the quasiperiodic capacitance matrix C.

® At the Dirac points, C* : constant multiple of the identity matrix.

® At the Dirac point o = o™ and for § small enough, the first Bloch resonant
frequency w* := w{* : of multiplicity 2.

® Quasiperiodic capaatance matrix coefficients Cfj and Cf3: differentiable with

respect to o at @ = a*
1
= C . N
a=a* —1
_ oCH

8&1 ’a:a* '

VaCi| =0, VaC

a=a

® D: symmetric with respect to '3 = ¢ # 0.
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Dirac degeneracies

® At a = ax, C®: eigenvalue of multiplicity 2: A" = AJ™;

® Exact degeneracy: For « close to ax and ¢ small enough, the first two band
functions form a Dirac cone at ay:

wf = we—pla — au|[1+ O(la — as)],
w8 = wetpla — au[1+ O(la — ax)];

® w, and pu: independent of o and satisfy

we = /AT +O(6) and  p = [c|[Vouo + O(6);

1 v2 oCS
Ho = < L ) c= ' 12 ‘ )
2 |D]_ ‘ Cll* 8011 =Cs

® Error term O(|ae — ax|): uniform in 6.

as 6 — 0;
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Dirac degeneracies

® Dirac cone and small-scale behaviour of the eigenmodes at o = «

0.9 0.15
‘uﬁﬂﬂg\m)ﬂ((a}:‘ﬂhj%"((m 0.1
0.2 Ma“”“ g,
0.05
=
Jo1s E 0
5 ;
g ; 005
£ o1 2
01
4
0.05 2015
6 4 2 0 2 4 6
M r1-axis

Quasiperiodicity a
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High-frequency homogenisation
* w—w, = Ve

oy /s+a AeidAX s,k (X
ug /¥ () = {Bei&.x} 55 (2) + 00

® Macroscopic field [i, ip] T := [Ae'®*, Bel®*]|T satisfies the two-dimensional
Dirac equation:

0 (=ci)(01 —102)| [dn] _ w—ws [
Ho | (—zi)(0y +102) 0 S VI
® Each i satisfies the Helmholtz equation:
— wy)?
AG + (w“i;)gj —o.

® Zero-phase shift propagation.

® High transmittance < Dirac cone near I'.
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High-frequency homogenisation
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Chains and screens of resonators

® d, < d: Quasiperiodic Green's function G** to be solution of
(A + K)G*K(x) =( D do((x1,0) — m)e™*)do(x0) in RY,
men
for x = (x;,x0) and a € Y*; radiation condition as |xp| — 400.

® Fourier series expansion + Poisson’s summation formula = k # |a + q| for all
g € N*, spectral representation:

ei(a+aq)x giv/k?—|a+ql?| x|

G¥k(x) = E
i 2
qEN*,|a+q| <k 21|YI| —\a+q|

outgoing modes
ei(atq)-xg—v/a+q|2—k2|x|
Z 2 _ f2
aeh* lotal>k 2|Y/|\/|a +qI> -k

evanescent modes
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Chains and screens of resonators

® Quasiperiodic single layer potential Sg‘k : L2(8D) — HY(8D): invertible if k is
small enough and k # |a + q| for all g € A*.

® k <infgepx |a + g|: exponentially decaying waves away from the structure =
evanescent waves;

® |a| < k <infgeax\ (o} |+ gl: propagating waves far away from the structure =
first radiation continuum.
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Resonances in the first radiation continuum

® Example of the subwavelength band structure of a resonator array with two
resonators in the unit cell;

® Shaded region: first radiation continuum first radiation continuum,

ol <w/v < inf a+ql;
ol <w/v< _inf ot

® Unshaded region: evanescent modes.

0.35 /_\ﬁ’\
03k T |
0.25} \ “/ 1

Frequency w

0
-m/L 0 w/L
Quasiperiodicity o
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Chains and screens of resonators

® Quasiperiodic capacitance matrix for ac 7 0:

cs ::’/a (S5°) ol do, ij=1,...N;

i

® Equivalently by

Cp = VVE-VV&dx, ij=1,...,N;
Y\D
® V& i=1,...,N, solutions
AVE =0 in Y\ D,
Ve =6 on 9D;,
Via(x+ /) — eia-/vl_a(x) VI €N,
Ve (x) =0 as |xo| — oo,

with x = (x/, xo).
® (C%: Hermitian matrix.
® Generalised quasiperiodic capacitance matrix for o # 0:
5;v?

D,-I\ cg, ij=1,...,N.

[ J—

P
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Resonances in the first radiation continuum
® |a| # 0 fixed; § — O:

Wy =VAF+0?), n=1,...,N;

e (A2 :n=1,...,N}: eigenvalues of C* € CNXN which satisfy A3 = O() as
d—0.

® Error term O(5%/2): higher order compared to the error term O(8) in the finite
case <= O(w)-term in the expansion of S with respect to w vanishes.

® Resonant modes:
% (x) Ve - S2K(x) + O(8Y/2), x eRI\D,
x) = :
ve - S2K (x) + 0(61/2), xeD;,
® k=wp(a)/v; ki = wn(a)/vi; Sg’k :RY — CM:

Sy 1)
Sg’k x) = , x€eR\ oD;
S wR1(x)
® Y& = (Sg'o)_l[XaD,-]-
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Resonances in the first radiation continuum
® |a| < k=w/v <infgeps\ (o}l + ql:
eiorxeiko\xo\ Z 1a+q —/|a+q|?— kQ‘XO‘
koYl 2\y,\\/m

® x=(x;,%); ko = \/k? — |a]2.

® Periodic (in the xj-variable) Green's function:

GO0 %ol
()= 2y Z

GO (x) =

eidxa—ldllxol

21Y
gehrvgoy  2Yillal
®* w—0 1
GWa0k(x) = - + G%%(x) + o X O(w).
)= 2kl O gy T O

® ko =w+/1/v2 —|ag|? = Green's function has a singularity when w — 0.
e Spk . 12(aD) — HY(D):
Sak ,
S5 el(x) = Sp°lel(x) —

i—a-x
2ko| Y|

w(y)do(y) — / o(y) do(y).
D o

oy
D 2ko| Y|
wagk _ awag,k , .
® w0 ST =S + WS 4+ O(w?); 8;°: independent of w.



Resonances in the first radiation continuum

® Dimension of Ker Sg’o is at most one; Sg’o: invertible from the mean-zero space
L3(dD) onto its image.

° |If Sg’o[cp] = K on 9D for some constant K and some ¢ € L%(OD) satisfying
Jap ¢ do =0, then o = 0.
-1
® For any ap € Y* with 0 < |ag| < 1/v, (S;ao'k) : holomorphic
operator-valued function of w in a neighbourhood of w = 0.

. (Sg“o’k)*1 does not have the w~!-singularity around w = 0.

Subwavelength physics Habib Ammari



Resonances in the first radiation continuum

—1
(Sgao’k) =850 +wS* + O(W?) asw — 0;

® S5° and §%9: independent of w.
® Forae Y™
a,k . [ Sa,k -1
¢; = (SD ) [XBD[]'
® If o = wayg for some fixed ap with |ag| < 1/v:
, -1 .
(Sgao,k) [xon;] =y? +wwi1,yo + O(w?),
as w — 0, for some 7?, z/)l.l'ao € L?(9D) independent of w.
o 0 =S xap]; ¥ = 8™ [xan,];
~ -1 ~
(S5°0") " Ixon] = v = wf + wip* + O(w?),
as w — 0; 9]0 = 10 4+ SFOSTO[Y).

® Singular part of §5a°’k

must vanish on 7,[)?:

/ ¢? do = 0.
JoD
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Resonances in the first radiation continuum

® Periodic capacitance matrix for ag with |ag| < 1/v:

C"?:_/ SSU[X&)D-] do, i,j=1,...,N.
D) e
:q_j;j‘?
°
(_“I.? = vvP. V\/jo dx;
Jy\p

* V?: unique solution to

AV? =0 in Y\ D,
=) on dD;,
V2 (x1, x0) is A-periodic in x,

V,-O(X,,XO) — :I:V;o as xp — Foo;
. 1
e VI = ——/ yoz/J?(y) do(y),i=1,..., N, and may depend on «g.
21Y)| Jap
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Resonances in the first radiation continuum

® Generalised periodic capacitance matrix:

0_51"/:'2 0
(AT

® o = wap for some ag independent of w and § s.t. |ap| < 1/v; Helmholtz
scattering problem < find n € H(9D) s.t. A%(w,§)[n] = 0;

o A%(w,§): H{(8D) — L2(8D):
T 1 W,k s\t #(1 —a,kyx way -1
A% (w,6) = (_§/+1CD’ ) (38) —6(§I+(ICD oy ) (spr)
® Subwavelength resonant frequencies:

O =14/N+00), n=1,...,N;

o (\0:n=1,...,N}: eigenvalues of CO € CN*N which satisfy A} = O() as
0 —0.
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Resonances in the first radiation continuum

® Higher-order approximations:

L,
C,‘j M= s 1[X6D] do;
D e —
_Lag
=y
Lao _ 0V} Loo
/ |Di '

® o = wap; ap independent of w and § s.t. |ag| < 1/v. As § — 0,

Wd =30+ 0(8%/?);

0.

® Iy roots of

det (CO +wChoo — w2l) =0.
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Resonances in the first radiation continuum

® Modal decomposition:

! V)-S5 N(x) +0(6Y?), x €Dy
(Ss’k[zp? + kp 0] (x)
S5 () = :
SpY + ki (x)
with k = wa(@)/v, ki = wa(@)/vi, ¥ := S [xon,]; Y1 = S%[xan;]-

), x € RY\ OD;
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Resonances in the first radiation continuum

® Scattering problem:

Au® + K*u* =0 in RY\ D,
Au® 4+ K2u® =0 inDj, i=1,...,N,
uly —u*|= =0 on 0D,
Ou® ou®
U S 0 ondD;, i=1,...,N,
ov |, ov
u®(x7,x0) is a-quasiperiodic in x;,
u® — Uy satisfies a-quasiperiodic radiation condition as |xo| — oo.

® upn(x) = elkx; a = Pk;

N —
(u® = i) (x) = D anug (x) — Sp* (sg*) ' [uin](x) + O(V);
n=1

® V: matrix of eigenvectors of C%; a, = an(w) satisfy

5 0\2 613 Sa,k -1 . 1d
w? — (wy) a1 D1 faD1 D [uin] do
v | = :
2 02 > 1
w — (w a SNV, Jk
W)™/ Aaw/\ omi ) (55%) 7 un] do
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Open questions

® Symmetry breaking and bandgap opening in honeycomb structures:

® Bi-disperse honeycomb lattice: change slightly the radius of one of
the two resonators in the unit cell;
® Perturbed kagome lattice.
® Valley-Hall effect:
® See https://www.nature.com/articles/ncomms16023;

https:/ /iopscience.iop.org/article/10.1209/0295-5075/129 /44001,
https://www.nature.com/articles/s41578-020-0206-0.

Subwavelength physics Habib Ammari


https://www.nature.com/articles/ncomms16023
https://iopscience.iop.org/article/10.1209/0295-5075/129/44001
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Lecture V: Robust guiding and localisation in
Periodic structures at subwavelength scales
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Subwavelength guiding of waves

® Helmholtz resonance problem in the fully periodic case d = d; = 2.
® Two defects: either a single resonator or a line of resonators are detuned.
® Square lattice with unit cell Y = [— %, %] X [— %, %}
® D: circle of radius R; Dy: circle of radius R + ¢ for some — R <e<1—R.
® Defect crystals:
'Dpt—< U D+m>UDd;
(0,00}

meZ?\{

D1n=< U D+(m1,m2)>u< U Dd+m>.

m1 €Z,my €7\ {0} mezZx {0}
0OE. 0000 -

e - e -
& Oy (O1]@:] O (O

‘) O, U, W&, O, W),
&, NN Al B A BN RN

OO0 OO0O0O

Ym(rip
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Subwavelength defect modes

® Subwavelength bandgap frequency: if it lies inside a bandgap of the unperturbed
structure.

® Defect modes: Create a detuned resonator with an upward shifted resonance
frequency (within the subwavelength band gap).

® \Weak interaction = decrease the radius of one resonator (from R to
R+e€ e<0);

® Strong interaction = increase the radius of one resonator (from R to
R+ ¢ ¢ > 0);

® Shift at resonator radius = resonator separation.

OO0
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Subwavelength defect modes

°
ke kr _ck
Sp -8k SDd Spy
= kr = kr
A= sk oSk Ap, oSk, _5835d
ov ov |, ov ov |,
® Fictitious source method:
Hf(Tl)(kfR) in6 J"(de) in6
P (e.i"e) s B WO (koR) P <e.i"9) o | IR ©
1 elm9 mn Rd JngkR) ei,,g s 2 elm9 mn J;](de) eine

Jn(kRg) Ji(kR)

o Ac .= (Pz)flADd'Pl.
® Subwavelength bandgap frequencies: characteristic values w = w®(§) of the

operator-valued function

1 .
W MAw,8) = 1+ (A%, 8) — A(w, 8)) / A%(w, ) da
(2m)? v+

inside the subwavelength bandgap of D, s.t. w® - 0asd — 0.

® A“: invertible for small enough § and for w inside the bandgap,

a0 58 -5
T\l Ryt 73<%1+(K5“’k)*> '
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Subwavelength defect modes

® Ase, 6 — 0,
x H 1
€ = - (@) ;
w wq exp< 5e + <|e|n5\>)

47r2C5w*R3 .
* = , Cs. positive constant.
R||"/1 HLZ(BD 2Cap¢)<*,D

P ||L2 oD) 2Capa*.D).

« S(R)= (R

40

Dilute regime  Non-dilute regime
£<0 >0

0.2 0.25 0.3 0.35 0.4

Bubble radius R
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Subwavelength defect modes

® Real part of the defect eigenmode:

1
0.8
0.6
5 104
0.2
0
02
’ 0.4
0.6
0.8
; 1
0 5 0 5 10

w-axis w-axis

y-axis
y-axis




Subwavelength guided modes

® |ine defect:

® Defect band within the subwavelength

band gap: large perturbation of the O O @ O O

radius;

Defect modes: localised to and guided TN Y

along the line defect; O O O O O

Absence of bound modes.

0 T 2
X M r X Quasi-periodicity
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Subwavelength guided modes

® Subwavelength bandgap frequencies: characteristic values w = w€(d, a1) of the
operator-valued function

W MO (w, 8) =1+ 2i (AS(w, 8) — A(w, d)) </ Alene2) (g, 6)~1 dag)
U —T

inside the bandgap of D, s.t. w® — 0 as § — 0.
® § and e: small enough; (R, €) satisfies one of the two assumptions:

(i) R is small enough and € < 0 (dilute regime);
(ii) R is close enough to 1/2 and € > 0 (nondilute regime).

® There exists a subwavelength resonant frequency w€ satisfying w® > w
Moreover, as d,¢ — 0, we have

(801) = (0) + p(en)VEE + 0 (V5 (“%;\ +1d))

Qg%
1 .

for some p = p(ay) > 0: independent of € and 4.
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Subwavelength guided modes

® The whole defect band lies in the subwavelength bandgap:

® For § and R small enough, and for fixed € € (—R,0), there exists a unique
subwavelength resonant frequency w® satisfying w€ > wf‘l’*. For a1 #0,

wé(e1) =&+ O (R*+39),

where & is the root of the following equation:

14 1 @2R2 | R L (1 R2 /Tr (wa)Z 4 0
— n— - — ————— dap =0.
o\ 25 Ry R2) ) ) @2 = (w2 "7

® For § and R small enough, and for fixed € € [0,1 — R), there are no resonant
frequencies satisfying w® > w;™"".

® For R and § small enough, there exists an ¢y > 0 s.t. for any € € (—R, —¢p),
w(o) > wi
for all ay € [—m, @].
® Defect modes in our case are not bound along the defect line: For § and R small

enough, and for a; ¢ {0, 7}, the subwavelength resonant frequency w® = w®(a1)

satisfies ;
Ow®

Oay
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Subwavelength guided modes

® Real part of the defect eigenmode for a; = 7/2 in the dilute case. Each peak
corresponds to one resonator, and the defect line is located at y = 0:

y-axis
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Topological properties of Hermitian systems

® General principle for trapping and guiding waves at subwavelength scales:
introduce a defect to a periodic arrangement of subwavelength resonators.

® Sensitivity to imperfections in the crystal's design:

0.105 T

035 0.1 . T

Quasi-periodicity a;

® Goal: design subwavelength wave guides whose properties are robust with
respect to imperfections.

® |dea: Topological invariant which captures the crystal’s wave propagation
properties.

® Topologically protected edge mode.
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Topological properties of Hermitian systems

® Bulk-boundary correspondence:

® Take two crystals with topologically different wave propagation
properties (different values of the topological invariant);

® Join half of crystal A to half of crystal B;

® At the interface, a topologically protected edge mode will exist.
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Topological properties of Hermitian systems

® An infinite chain of resonator dimers:!

Y

VISERVISE

|
!
|
|
|
|
|
|
|
|
|
T
!

D,
d d’
Two assumptions of geometric symmetry:
® dimer is symmetric, in the sense that D(:= D; U D;) = —D,

® cach resonator has reflective symmetry.

1 Analogue of the Su-Schrieffer-Heeger model in topological insulator theory in
quantum mechanics.
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Topological properties of Hermitian systems

® The Zak phase:
wZ = / An(a) da;  Y* =R/27Z ~ (—m, ] (first Brillouin zone);
® Berry-Simon connection:
. o 0 e
An(e):=1i [ uf—T17 dx; n=1,2.
Jp " O«

® For any ai,an € Y*, parallel transport from g to ap gives uf! — e'®uf?,

where 6 is given by
a2
0 :/ Anda.
ay

® = The Zak phase corresponds to parallel transport around the whole of Y*.
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Topological properties of Hermitian systems

® Quasi-periodic capacitance matrix: C = (C2*); j=1,2.

® The Zak phase is given by the change in the argument of C{} as « varies over
the Brillouin zone:

1 !
h = 5 [arg(Cia)ly« -
® Further, it holds that
Cyl = e '*CH, = if d = d'then CJ5 =0,
where the prime denotes that d and d’ have been swapped.

® Thus,
lp' — il =m
n n b

i.e. the cases d > d’ and d < d’ have different Zak phases.
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Topological properties of Hermitian systems

® Dilute computations: Assume that the dimer is a rescaling of fixed domains B;

and By:
d d
D1=EBlf(§,0,0>7 D2:€B2+(§»0:0):

for 0 < e.
® In the dilute regime, as ¢ — O:
. )0, if d<d,
T\ n i d>d
® There exists a band gap for all d # d’,
® The dilute crystal has a degeneracy precisely when d = d’.
® The dispersion relation has a Dirac cone at a = 7.

® Band inversion occurs between d < d’ and d > d’.
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Topological properties of Hermitian systems

® Band inversion:

d<d d>d

/L
iy

y-axis
y-axis
y-axis

yraxis

20 10 0 100 20 20 10 0 10 20

z-axis T-axis

z-axis

The monopole/dipole natures of the 15t and 2" eigenmodes have swapped between
the d < d’ and d > d’ regimes.




Topological properties of Hermitian systems

® A finite chain of resonators
¥n = pp=m
O O O O
\\/_/ R/J

OO0 OO OO0 O OO0 OO 00

d d’ d’ d

® (Capacitance matrix of the finite chain D = U;V:1 Dy:

c=(G), CU3:*‘/E)D(SD)71[Xan], =1 ..\
J

® Odd number of resonators = odd number of eigenvalues; middle frequency:
midgap frequency = robust to imperfections.
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Topological properties of Hermitian systems

® Finite chain - localisation: There is a localised eigenmode

0.2

Ru,

0 200 400 600 800 1000
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Topological properties of Hermitian systems

® Finite chain—stability to imperfections: Simulation of band gap frequency (red)
and bulk frequencies (black) with Gaussian (0, o) errors added to the
resonator positions. o: expressed as a percentage of the average resonator
separation.

® Even for relatively small errors, the frequency associated with the point defect
mode exhibits poor stability and is easily lost amongst the bulk frequencies.

. 0.059
0.05

0.056

1 10%

Position error o

Finite chain with topological interface Classical, point defect chain.

osition error o

Subwavelength physics Habib Ammari



Topological properties of Hermitian systems

® Finite chain - effect of diluteness.

® The variance of each frequency is consistent across both dilute and non-dilute
regimes.

® |n both the dilute and non-dilute regimes, the structure supports a localised
mode whose resonant frequency is in the middle of the band gap.

® In the dilute regime, the nearest-neighbour approximation, C; =0 if |i —j| > 1
does not give an accurate approximation = significant difference between
classical wave propagation problems and topological insulator theory in quantum
mechanics.

0.068 . .

0.05

. 0.066
0.056

0.064

3

frequency w

£ 0.056

0.054

0052
0%

Position error o Position error o

Dilute chain, d =12, d’' =42, R=1 Non-dilute chain, d =3,d" =6, R=1
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Topological properties of Hermitian systems

® Chiral symmetry: there exists ¥ with ¥2 =/ s.t. C satisfies
¥Cr=-C.

® Chirally symmetric matrix: symmetric spectrum.

e C: subtract the constant diagonal elements from the capacitance matrix C and
use a nearest-neighbour approximation.

e bisymmetric, tridiagonal matrix with odd size and zero diagonal = chirally
symmetric, and has a zero eigenvalue.

® C: retains its chiral symmetry when errors are made in the position of the
resonators.

0.056
3 3 0.056

0.0545

0.054

0.0

Position error o Position error o
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Topological properties of Hermitian systems

® Short finite chains: The stable mode exists also in very short chains of
subwavelength resonators.

® With only 9 resonators, there is a midgap frequency which is much more stable
than the bulk frequencies.

Resonant frequency w

Position error o Position error o

N = 41 resonators N = 9 resonators
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Topological properties of Hermitian systems

® A second approach for creating robust localised subwavelength modes:

® We start with an array of pairs of subwavelength resonators, known
to have a subwavelength band gap. A dislocation (with size d > 0) is
introduced to create mid-gap frequencies.

- 00 OO OO OO OO 0O QO -

.00 00 00 0, "o o0 0O 0O
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Topological properties of Hermitian systems

® As the dislocation size d increases from zero, a mid-gap frequency appears from
each edge of the subwavelength band gap. These two frequencies converge to a
single value within the subwavelength band gap as d — oc.

subwavelength f mid-gap frequencies

regime =

band gap

-
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Topological properties of Hermitian systems

® d < 1: use asymptotic expansions in terms of d to prove that there is a
bandgap frequency emerging from each edge of the bandgap;

® d = mlL for some m > 0 = dislocation equivalent to removing m dimers from
D: explicit computations of the bandgap frequencies in terms of the eigenvalue
problem of certain Toeplitz matrices;

® | = 1/L: ratio of the separation of the resonators to the unit cell length.
® Two fundamentally different cases: Iy < 1/2 and [y > 1/2.

® First case: dislocation occurs between dimers of resonators, keeping each pair of
resonators intact;

® Second case: dislocation occurring within a dimer, splitting one pair of
resonators into two “edge” resonators.
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Topological properties of Hermitian systems

® Assume that D; and Ds: strictly convex. For small enough d and §, and in the
case [y > 1/2, there are two bandgap frequencies wq(d), w2(d) s.t.
wj(d) — wjo,j =1,2asd — 0. In the case [y < 1/2, there are no bandgap
frequencies as d,6 — 0.

® Assume that the resonators are in the dilute regime and that fy > 1/2. For small
enough § and ¢, there exists some dy = O(e) s.t. there are two bandgap
frequencies wi(d) and wy(d) for all d € [dp, +00), both of which converge to the
same value weo as d — +o0o0.

® Bandgap frequencies will cover an interval
1 := [wi(do), w2(db)]

inside the bandgap, and therefore allows us to fine-tune the system to achieve
optimal robustness.
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Topological properties of Hermitian systems

® Two edge modes for an array of 42 spherical resonators of radius 1; edge mode
of the corresponding ‘half system':
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Bound states in the continuum and Fano resonances

® | ocalised modes can exist in periodic structures without a defect.

® Symmetries = resonant modes in the radiation continuum whose far field
radiation vanishes: bound states in the continuum.

® Resonant mode uf: bound state in the continuum if

® corresponding resonant frequency wy: real, satisfies |a| < wy /v
® 4y satisfies,

ug (x1,x0) = O(e Pl), x| = 400, K > 0.

® Subwavelength band structure close to the origin.

® Resonant frequency: real and corresponds to an eigenvalue that is embedded
within the continuous radiation spectrum, which is the spectrum of waves that
can propagate into the far field.

® Bound state in the continuum: eigenmode associated with this real-valued
resonant frequency vanishes in the far field = it will not interact with incoming
waves and the corresponding resonance peak will therefore not appear in the
transmission spectrum.
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Bound states in the continuum and Fano resonances

® Parity operators P, Py: P(x) = —x, Po(x;,x0) = (x1, —x0)-
® Symmetric screen of dimers repeated periodically:

® inversion symmetry: PD; = Dy;
L4 poD,' = D,' for i = 1,2.

® Inversion symmetry = periodic capacitance matrix C® independent of ag:

1 -1
cochl(_l 1).

® For ag = 0, wy: real; corresponding mode u ~ 0 as xp — £o0.
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Bound states in the continuum and Fano resonances

® Symmetry broken: the real eigenvalue wy will be shifted into the complex plane
and the corresponding mode will be coupled to the far field.

® Design the system so that the two resonances interfere: w; with large imaginary
part.

® Derive an expression for the scattering matrix = demonstrate the occurrence of
a Fano-type transmission anomaly.

® Existence of asymmetric peaks in transmission spectra due to the interference
between a “discrete state” and a “continuum”.
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Bound states in the continuum and Fano resonances

® At the resonances, w = 0 or w = R(w»), scattering matrix corresponding to
transmission peaks where transmittance close to 1:

5(0) = (2 (1))+0(51/2) and 5(9%(%)):(_01 *01>+0(51/2);

® Widths of the peaks specified by the corresponding imaginary part S(w1), S(w2).

® Tune the parameters of the system so that &(w1): large while S(wy): small =
for small w*,
w1 w1 w1

~ ~

w1 — (R(w2) —w*)  wr — (R(wa) +w*) w1 — R(wa)

t1: not too small.

t1,
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Bound states in the continuum and Fano resonances

® Transmission coefficient:

t(R(w2) +w™) = . — — =

* At w* = R(wz) Slwz)

S(w1)’
t(R(w2) +w™) =0, t(R(w2) —w™) = 2t;.
® w* > 0; t: close to zero at w = N(w2) + w* and not at w = R(w2) — w* = an
asymmetric transmission peak at w = f(wz).

® For some frequency slightly larger than R(w2) the transmittance will be close to
zero, but for all frequencies slightly lower than R(w>) the transmittance will be
nonzero.
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Bound states in the continuum and Fano resonances

® Resonators arranged in a symmetric dimer that is inclined at an angle of 6 to the
plane of the screen.

Transmittance

Reflectance

0.4F°%
o
02p™

0 0.5 1 15 2 2.5 3 3.5 4 0 0.5 1 15 2 2.5 3 3.5 4
Frequency Frequency w
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Open questions

® |nterface modes in honeycomb structure of subwavelength resonators; zigzag
defect; armchair defect; their topological protection; see
https://arxiv.org/abs/2405.03238;
https://www.nature.com/articles/ncomms16023;
https://link.springer.com/article/10.1007 /s00205-018-1315-4.

® Topological Valley-Hall interface modes; their Chern numbers; see
https://journals.aps.org/prl/abstract/10.1103 /PhysRevLett.120.063902.
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https://arxiv.org/abs/2405.03238
https://www.nature.com/articles/ncomms16023
https://link.springer.com/article/10.1007/s00205-018-1315-4
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.120.063902

Lecture VI: Anderson localisation
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Anderson localisation

® Strong localisation in random media with long-range interactions.

® Scattering of waves by subwavelength resonators with randomly chosen material
parameters reproduces the characteristic features of Anderson localisation.

® Hybridisation of subwavelength resonant modes is responsible for both the
repulsion of energy levels as well as the phase transition, at which point
eigenmode symmetries swap and very strong localisation is possible.

® (Characterisation of the localised modes in terms of Laurent operators and
generalised capacitance matrices.

Localized mode

Tp-axis 1-axis
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Anderson localisation

® Arrays of resonators with defects:

SORORORONCRONONONORS

-4 -3 -2 -1 2 3 4
3 2 1 0 1 - M M+1 M+2 M+2
0 1 2 3 4 5 6 7 8 9
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Anderson localisation

® A: lattice of dimension 1 < d; < d,

p=J) U o D"=Di+m D= |J D;
mehie{l,...,N} ie{1,...,N}

® v™: wave speed in D"; v: wave speed in the surrounding medium; " = O(9)

for § — 0.
® Find w s.t. there exists nontrivial solution u:
w2
Aut —u=0 in R\ D,
v
W2
Aut = _u=0 inDm i=1,...,N,
(v '
ul+ —ul-=0 on 0D,
0 0
mZ 2 —0 ondDM i=1,...,N,
ov|, Ov|_
u(xs, x0) satisfies an outgoing radiation condition as |xp| — +o0.
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Anderson localisation

® Localisation in the [2-sense:
[, 0P dx =1 and [ JuGa o) dx < +oc,
RY RY

for any xg € RY=4,
® u: localised, normalised eigenmode corresponding to an eigenvalue w which
satisfies w = 0(61/2) as § — 0. Then, uniformly in x € D,
u(x) = u" + O(Y?), xeDMi=1,...,N,meA,

m.

u: constant with respect to x and d.

® Discrete Floquet transform:

Uldl(e) = D ¢(m)e!™ ™, U [Y](m) =

meAN

1 .
v /Y* Y(a)e ' M da.

® Real-space capacitance matrix:

C" =u~[C|(m), C"=u"t[Cc*|(m), m€eA.
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Anderson localisation

® Discrete Floquet transform =

Au® 4+ K2u® =0 in Y\D,
I(X m
Au® +w2z u(x+ mA)=0 in Dj,
me/\

u¥lf —u*|= =0 on 9D;,

ou™ 8u
0i—— =0 on 0D;,

ov ov |_ '
e’m“"’u"(x,,xo) A-periodic in x;,
u®(x7,%0) satisfies an outgoing radiation condition

as |xg| — +oo.

® |nside D;,

u®(x) = uf* + O(8Y?), xe D, Z ulMetorm,
menN

for some sequences u” € 22(C) fori=1,...,N.
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Anderson localisation

® Characterisation of localisation: Any localised solution u corresponding to a
subwavelength frequency w = wg + O(9), satisfies

Bm ZC’"’”U” = w%um,
nen
for every m € A (real-space variable);
® (C™: inverse Floquet transform of C® (real-space capacitance matrix); u™ € RY;

® Bm: N x N diagonal matrix whose it" entry is given by b =1+ x7; x™:
random perturbation of the material parameter of the resonator i in the cell m.
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Laurent-operator formulation

* IfA=2,
Beu = wiu.

® Doubly infinite matrices and vectors:

O ol ¢ 3. w1 e B_1 0 0 0 -

_ .7l 0 el o2l _ 0 _ e 0 By 0O 0 -
¢= .c72¢c7t 0 et | u= ul » B= .+ 0 0 By 0 -
0 0

.c3¢c2¢c 10 u?

® ¢: (block) Laurent operator corresponding to the symbol C*.
® A localised mode corresponds to an eigenvalue of the operator ‘B€.

® In the periodic case (when B = [), the spectrum of the Laurent operator € is
continuous and does not contain eigenvalues, so there are no localised modes.

® The operator B& might have a pure-point spectrum in the non-periodic case.
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Anderson’s original Hermitian model

® Tight-binding model:
€1 -V
-V e -V
th - . . . 3 V > 0
-V ey
® Disorder supplied by the site energies ¢;; independent, uniformly distributed
random variables.

® Disorder = entries of BC: correlated

- B_4 0 0 0 - o0 et o2 8l

_ |- 0 By 0 0 - o7l o0 el o2
BE = -+ 0 0 By 0 - .e72 ¢ 0 et

0 0 0 By - L.c73¢c2¢cLle0 .
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Toeplitz matrix formulation for compact defects

® Compact defects: By, are identity for all but finitely many m; 0 < m < M.
® Xp: diagonal matrix with entries x/.

® (Block) Toeplitz matrix formulation: wg corresponds to a localised mode iff

det(/ — XT(wo)) = 0.

® X: block-diagonal matrix with entries Xp;

°
70 71 T2 M
-1 70 71 M-t
T(w) = -2 -1 70 o TM=2 :
7T—M —(M-1) r—=(M=2) 70
o
m 1 iampo a 21
T = — e'*mC (C —w I) da.
[Y*| Jy=
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Hybridisation and level repulsion

® A single localised mode:
1 T

Lod
o
°
°
°
Lod
°
°
°
°
Lo
°
o
o
°
Lod
°
o
°
o
Lod
°
°
°
o
Eod

=
>
e
o
o
>
=

Resonator number

® Two localised modes (higher mode has a dipole (odd) symmetry while the lower
mode has a monopole (even) symmetry):
1 T

Resonator number
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Hybridisation and level repulsion

® The values of x; and x» are drawn independently from the uniform distribution
U[x — V30, x + V/30].
® | evel repulsion: introduction of random perturbations causes the average value

of each mid-gap frequency to move further apart (and further apart the edge of
the band gap):

—x— Upper localized frequency —o— Lower localized frequency
= 0.198 1
I —c o ———o— ——
O
= 0.197 1
0.10; DR
o
& 0.05 1
=
<
> 0

0 0.005 0.01 0.015 0.02
Perturbation size o
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Phase transition and eigenmode symmetry swapping

® Two identical defects of magnitude x;

® Doubly degenerate frequency: a transition point whereby the symmetries of the
corresponding eigenmodes swap:

0.22

0.21

Frequency w

0.2

0 0.1 0.2 0.3 0.4
Perturbation size =

® Sharp peak at the transition point in the degree of localisation:

0.9 0.2

g

0.4 0.6 0.8 1
Perturbation size

0.1 0.2 0.3 0.4
Perturbation size =
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Open questions

® Topological Fano-resonances: by coupling a continuum mode to a discrete mode
that is topologically protected;

® | ocalisation for k-banded Toeplitz matrices;
® Thouless criterion for localisation/delocalisation;

® Edge mobility; high-frequency homogenisation of the eigenmodes near edge
mobility.
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Lecture VII: Non-Hermitian, reciprocal
periodic systems of subwavelength resonators

Subwavelength physics Habib Ammari



Scattering problem
® D;,Dy,...,Dy CRY d € {23}, NeN: disjoint, connected sets with
boundaries in C15 for some 0 < s < 1.

® v;: wave speed in resonator D;; ki = w/v;: wave number in D;, where
w € R,w # 0,: operating frequency; v and k: wave speed and wave number in
the background medium.

® Scattering problem:

Au+k*u=0 in RY\ D,
Au+k*u=0 inD;, fori=1,...,N,
ul+ —ul-=0 on 9D,
;%+—%_:0 on dD; fori=1,...,N,
u — ujy satisfies an outgoing radiation condition.

® High contrast regime 0 < § < 1:
v,v;i = O(1),6; = O(9), fori=1,...,N.
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Subwavelength resonance problem

® Finite collection of resonators:

@
o

® Subwavelength resonant frequency: Given § > 0, a subwavelength resonant
frequency w = w(d) € C:

(i) there exists a non-trivial solution to the scattering problem with
uin = 0, known as an associated resonant mode;
(i) w depends continuously on § and satisfies w — 0 as § — 0.
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Capacitance formulation of the resonance problem

® For sufficiently small § > 0, there exist N subwavelength resonant frequencies
w1(d),...,wn(d) with non-negative real parts.

® (C: capacitance matrix

CU:—A (Sg)il[xtijj]dO’, ij=1,...,N.

i
® Generalised capacitance matrix:

v1251
[D: |

c=vc, V=
VI%I(S’V
[Dn]
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Exceptional points in non-Hermitian systems

® (: generalised capacitance matrix. We say that a system of N € N resonators
D1, D5, ..., Dy in R? admits an N™-order exceptional point if there exists ~ s.t.

det(C — xI) = (v — x)V,
dimKer (C —~/) = 1.

® Parity—time symmetry: each resonator D; can be uniquely associated to another
resonator D; (possibly with i = j) s.t.

D; = PD;, v,-25; :’T(vfdj);

® Parity operator P : R3 — R3; time-reversal operator 7 : C — C:

P(x) = —x, T(z) =z
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Exceptional points in non-Hermitian systems

® N'_order singularities in C, = design of subwavelength resonant structures with
higher-order resonant singularities.

e Nth-order exceptional point for C = there exist N resonant frequencies
wi,...,wy and associated eigenmodes vy, ..., uy s.t. forany i,j € {1,..., N}

wj ij+0(6), as § — 0,
and for any i,j € {1,..., N} there exists some K € C s.t.
up = KUj + 0(6), as 6 — 0.
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Exceptional points for PT-symmetric dimers
® Parity-time-symmetric system: D; = —D, and v1251 = @

D1 D2

® 26y := atib, V28 :=a—ib, for a,b€R; |b|: magnitude of gain/loss.

® Exceptional points: There is a magnitude of the gain/loss s.t. resonant
frequencies and corresponding eigenmodes coincide to leading order in §.

® PT-symmetry = spectrum of the capacitance matrix to be conjugate symmetric.

0.02

Frequency
=4
2

o
i
i
i
i

-0.01
0 0.2 0.4 0.6 0.8 1

Gain/Loss b %107
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Capacitance matrix of an infinite, periodic system

® Quasiperiodic capacitance matrix for o € Y*, o # O:

C,-j-":: VVI”-VVJ-O‘dx, ihj=1,...,N;
Y\D
[ ]
AVH =0 in Y\ D,
V& =6 on 0D;,
VI(Y(XJ’_ /) — euy-/via(x) VI € A,
V& (x) =0 as |xp| — oo,

with x = (x, xp).
® (C% : Hermitian; positive definite.

‘/—J%
00 ®® 0O0-
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Topological properties of Hermitian systems

® An infinite chain of resonator dimers:

® The Zak phase:

0
pZ = i/ / uS —1uy dx da;
Jy=Jp " O«

® Given by the change in the argument of C% as « varies over the Brillouin zone:

1
o5 = = larg(CR)]y-
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Topological properties of Hermitian systems

® A finite chain of resonators
¥n = pp=m
O O O O
\\/_/ R/J

OO0 OO OO0 O OO0 OO 00

d d’ d’ d

® (Capacitance matrix of the finite chain D = U;V:1 Dy:

c=(G), CU3:*‘/E)D(SD)71[Xan], =1 ..\
J

® Odd number of resonators = odd number of eigenvalues; middle frequency:
midgap frequency = robust to imperfections.
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Systems with complex material parameters
® Consider dimers in a two-dimensional square lattice with period L in R3.
® Parity-time symmetry for the dimer D = D; U D5:
PD; = Dy, 61vi = T(52v3);
P: parity operator and 7: time-reversal operator.
® Consider the regime: w — 0 while || > ¢ > 0 for some ¢ independent of w.

® letv=1;, C*= (C,-JC-“),-J:LZ: quasiperiodic capacitance matrix corresponding to
the PT-symmetric metascreen; C* = VC® : generalised quasiperiodic
capacitance matrix;
* V.
v1261
| D1

v2252
[Do|

® As § — 0, the quasiperiodic resonant frequencies satisfy the asymptotic formula
W =\ AF+0(8?), i=1,2,
where \{': eigenvalues of the generalised quasiperiodic capacitance matrix C*.
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Systems with complex material parameters

® Positive, real-valued parameters a and b:

S1vi =a+ib, i =a—ib.

® Eigenvalues of C:

A = aCl £ /22| CR? — 2((CR)2 — |CI2).

® Exceptional point exceptional point for the P7T-symmetric metascreen occurs
when b = bp(a),
al G|

V(G2 — G

® Exceptional point depends both on the geometry and on the quasiperiodicity «.

bo(a) =
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Systems with complex material parameters
® Band structure of a P7T-symmetric metascreen:
® Close to the origin of the Brillouin zone the system is always below

the asymptotic exceptional point;

® For larger o and for large enough b, there will be a point ap where
b = bo(a);

® For « above this point, the band structure of the system has a
nonzero imaginary part and the two bands are complex-conjugated to

leading-order in 4.

0.15

Frequency w

-0.05
T M

Quasiperiodicity o
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Extraordinary transmission and unidirectional reflection

® Metascreen: composed of a P-symmetric resonator dimer D = D; U D, repeated
periodically in a planar configuration with an incident plane wave ujy,.

Top view . O O O acn
f\}

ﬁ‘s‘ﬁ@ﬁ@ﬁ;‘ﬁfﬁw‘

20 98 0@
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Extraordinary transmission and unidirectional reflection

® Extra symmetry condition: P, in-plane parity symmetry,
Pa(x1, x2,x3) = (—x1, —x2, x3),
P.D; = Dj, i =1,2.

® Generalised periodic capacitance matrix:

c® = vco;

® FEigenvalues )\(1’, )\g and corresponding eigenvectors v?,vg of CO:

1 —(a+1ib
N =0, A= 2aCh, V9:<l>, Vg:< E—;fib)>'
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Extraordinary transmission and unidirectional reflection

® For ag s.t. |ag| < 1, the “higher-order” matrix Ch@0 = (Ch@0); ;q 5
o ] 2 e 2
1, o 71W0L 1 1 - 1wp &y 1 —1 P .
C,‘j - 2 1 1 2L2 —1 1 ’7./*112'

e Cliao .= yChao,

® Second band in the first radiation continuum, |a| < w <infgepx\foy |+ ql,
approximated by

2aCo%  iawg [ B2L2 2
a 11 0 0 3/2
=4/ + — 0 ) +05%2).
we |Di|  4CY ( a2 L2> (%)
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Extraordinary transmission and unidirectional reflection

® |ncident field u;,: sum of plane waves given with wave vectors k4 ;

® w: real with 0 < w < K+/§ for some constant K positive and a = wayg. Let
)\8, vg: the second eigenpair of C% and A = w?. Assume that

S(dTchoovd) #£0, whered =(1,-1)".

Then, for ws.t. A = )\g + A\*, where \* = O(w3), the solution to the scattering
problem can be written as

u—upn = —(a+ib)uSY + (a —ib)uSy" — S (Sg'w)_l [tin] + O(w?);

1 given by

s}

V261 k-1
d’p \lDl| / (8 7k) [u™] do
= dT (wClao — >\*I)VO +0(w), p=— V269 oDy S
2 2 / (Sgy ) [Uin] do
|D2| Jab,

Error terms: uniform with respect to A* in a neighbourhood of 0.

0
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Extraordinary transmission and unidirectional reflection

® Scattering behaviour of the P7T-symmetrical screen of resonators:

2aC{)1

® D: PT-symmetric; PoD; = D; for i =1,2. Let wyx = D1l
1

. Assume that

bL? # acg and that w € R s.t. w — ws = O(6).

® Asymptotic expansion of the scattering matrix:

s )72iwi\s‘(w§) 1 -1 N 2wwob —aco ibL? (1 0)
DT \ a1 1) T an (@5 —w?) \ibl2  aq)  \O 1

+0(5Y/2);
Error term: uniform with respect to w in a neighbourhood of ws.

® In particular,

w2 —w?+ 2“)“2701‘”0
1
ralw) = - (ws)? — w? +0(82);

® At leading-order, the reflection coefficients r4 vanish at some frequencies w4 .
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Extraordinary transmission and unidirectional reflection

® Transmittances T4 = T_; Reflectances R, # R_.
® There are points when R4 vanish while Rz is nonzero: unidirectional reflection.
® Transmission coefficients: not bounded by unity and can attain large peak values

=> extraordinary transmission;

6

5’4 //‘\ 77777 By 7

s
\n
By

oo oot

(XS]
o8
(OFs2)

Reflectance, transmittance
w
j
i
i
\
|
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0Ny VOB
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Yoo

v

P

Frequency w
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Extraordinary transmission and unidirectional reflection

® Extraordinarily high transmittance at b = acp/L?:

Peak transmittance

Subwavelength physics

104

0%}
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10°
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Extraordinary transmission and unidirectional reflection

® |n the Hermitian case: real resonances correspond to bound states in the
continuum, which decouple from the far field and therefore cannot be excited by
incoming waves.

® |n the non-Hermitian case: real resonances with modes which are excited by
incoming waves.

® Such resonances correspond to extraordinary transmission, where the transmitted
field is greatly amplified.

® This amplification, which is impossible in the Hermitian case due to energy
conservation, is possible due to the energy input in the non-Hermitian case.
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Non-Hermitian band inversion and interface modes

® | ocalised interface modes in the non-Hermitian case:

® |ocalised interface modes in crystals where the periodic geometry is
intact, and a defect is placed in the parameters.

® A topological winding number: the non-Hermitian Zak phase, which
describes the winding of the complex eigenvalues.

® Exceptional point degeneracies can open into non-trivial band gaps
enabling non-Hermitian interface modes.

m= -1 m=20 m=1 m=2

OB 0® | BY B -
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Non-Hermitian band inversion and edge modes

® Exceptional point degeneracy:

0.025

Real part
- -~ Imaginary part

0.02

0.015

0.01

Frequency

0.005
0 J SS E—; !

-0.005

-0.01
»

s r M
Quasi-periodicity

® Non-Hermitian Zak phase: ujo‘: right eigenmode; vjo‘: left eigenmode

corresponding to W,
i ous* ove
Czak _ ! J fi
o= 5/ <<"fa’ 5o ) {8 5 ) de

® Hermitian counterpart of the structure is topologically trivial.

® Non-Hermitian Zak phase: not quantised but can nevertheless predict the
existence of localised interface modes.
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Non-Hermitian band inversion and edge modes

® Exceptional point degeneracy occurs when k; = Ky = k for sufficiently large k:
* fi=Ch+Ch B=2C = (51(+ B2)/(B2 — B1).
® If k1 = Rz := k with [Im(r)| < BLL (unbroken PT-symmetry),
T

the structure does not support localised modes in the subwavelength
regime.
® If k1 = Rz := Kk with [Im(k)| > \l}e(i (broken PT-symmetry) or if
k1 # Rz (no PT-symmetry): characterisation of the localised mode
in the subwavelength regime.
® Purely non-Hermitian effect: interface modes can be achieved by swapping 1
and k2 while keeping the distance between the resonators fixed.

0.6

04 ”

02 ﬂ‘ M

0

0.2 ”‘

0.4

Eigenmode

0.6

0 50 100 150 200 250
Position z,
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Topological phase transitions

Hermitian:
w w w
« «
d<d d=d d>d
No band inversion Dirac cone Full band inversion

Non-Hermitian:

|k1| < |ka2l K1 =F2 [r1] > |w2]
Partial inversion Exceptional point Partial inversion
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Topological properties of non-Hermitian systems

® Edge modes in the non-Hermitian case:

® Protected edge modes in crystals where the periodic geometry is
intact, and a defect is placed in the parameters.

® A topological winding number: the non-Hermitian Zak phase, which
describes the winding of the complex eigenvalues.

® Exceptional point degeneracies can open into non-trivial band gaps
enabling topologically protected non-Hermitian edge modes.

m= -1 m=20 m=1 m=2

OB 0® | BY B -
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Open questions

® Exceptional points in honeycomb lattices;

® Non-Hermitian Dirac points
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.124.236403.

® When exceptional points meet Dirac singularities:
https://journals.aps.org/prb/abstract/10.1103/PhysRevB.107.104106.
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Lecture 1I1X: Non-Hermitian, non-reciprocal
systems of subwavelength resonators
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Non-Hermitian skin effect

® PDE model: D = U,’.\L1 chain of finitely many periodic resonators (in

xi-direction) with a non-Hermitian imaginary gauge potential

Aut+w?lu=0 in RY\ D,
K

Au—l—wzﬁu-i-"/@nu:o in Dj,i=1,...,N,

1

u|+ = u|7 on BD,‘7
&@ = @ on OD;,
pov|, Ov|_

u satisfies the radiation condition.

® Condensation of bulk eigenmodes at one of the edges of the system (depending
on sign(v)) as its size increases.
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Non-Hermitian skin effect

® Green's function:

G¥(x) = — exp(—vyx1/2 +iy/w? — ¥2/4|x|)
7 4r|x| ’
* AGY +w2Gf;’ +70x G = 6o in RY.
® Characteristic values:

1 W,k 1 W, * -
LRy —ei(A K

=A(w,9)

® Eigenmodes and eigenfrequencies approximated by the eigenvectors and square
roots of the eigenvalues of the gauge capacitance matrix:

%4
Y — i Y X: 0\—1
(CN)i,j - Jp, et dx /(,m_ e (Sp) ™ [xop;ldo(x).

i
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Non-Hermitian skin effect

® Eigenvectors of the gauge capacitance matrix are exponentially decaying or
growing, depending on the sign of v:

10 20 30 40 50
Position of the resonators Position of the resonators

v=1 v=-1

Subwavelength physics Habib Ammari



Non-Hermitian skin effect

® Gauge capacitance matrix C7: perturbed Toeplitz structure <= system: almost
translational invariant;

® |ong-range coupling in three dimensions = C7: dense.

® (C7: approximated by a banded Toeplitz matrix with a perturbation on the edge.
® Symbol function: f(z) = Zj‘f:__l(k_l) a;z.

104

T ap A 0 0
:5 ap
S

;5 0 a_j_1

) ao

?5 | o0 0 Akl P
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Non-Hermitian skin effect

® Define T := {z € C: |z| =1} and I(f(T), A) the winding number of f(T) at X in
the positive direction.

® Exponential decay of the pseudo-eigenvectors: predicted by the winding number:

‘(V(M)J_( <{ Cpi=t, i I(f(T),\) >0,

U< ) 1 <j <N, for some p > 1.
max; | (v() | CoN I, if I(F(T),A) <0,
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Non-Hermitian skin effect

x107°

Imaginary part
(=]
<

-1
-2
1 2 3 4 5 6
Real part %10~ Position of the resonators
f(T) and the eigenvalues. Eigenmodes.
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Non-Hermitian skin effect

® One-dimensional case: C7 tridiagonal, perturbed Toeplitz;

[ ]
atfB 7
B fed :
7= : ) ;
o n
B a+n
a+pB+n=0;
[ ]
B # iyl o< [In(B/n)l.
® Eigenvectors:
v < —F

® Eigenvalues: all real.
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Non-Hermitian skin effect

® FEigenvector localisation and e-pseudospectra of C7:

001000

T T
0 10 20 30 100
Site index

® Condensation of the eigenmodes at one edge; “Infinite” order exceptional point.

® Topological nature of the skin effect: localisation of the eigenmodes
corresponding to eigenvalues € region where the symbol of the Toeplitz operator
corresponding to the semi-infinite structure has negative winding.

Habib Ammari
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Non-Hermitian skin effect

® Stability of the skin effect:

® Topological protection of the associated (real) eigenfrequencies;

® Competition between the non-Hermitian skin effect and the
disorder-induced Anderson localisation;

® As the strength of the disorder increases, more and more eigenmodes
become localised in the bulk.
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Non-Hermitian skin effect

® Single realisations with increasing disorder strengths:

10 1.0
0.5 0.5
0.0 0.04
—0.5 0.5 1
1.0 . ; 4 -0 . . -/ : ; ; N
0 10 20 30 0 10 20 30 0 10 20 30
Site index Site index Site index

® Competition between the non-Hermitian skin effect and Anderson localisation:

L0 X 10 50
4.5
4.0 v
0.8 4 4 o
08 35%,
30 &
0.6 4 0.6 25 5
=
2.0 .2
041 0.4 15 3
1.0R
0.2 0.2 4 0.5
T T T T T T 0.0
0 2 4 0 20 40
Disorder strength & Eigenvector index ¢
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Dimer systems

® Dimer systems = Perturbed Block Toeplitz matrices.

® Fredholm index of the associated operator (= winding of the determinant of its
symbol) takes value zero at some point on the unit circle.

® Winding of the two eigenvalues of the symbol: predicts accurately the
exponential decay of the eigenmodes and is the limit of the pseudospectrum as
N — oco.

© 004

0.5

—1.04

Habib Ammari
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Non-Hermitian Anderson model

® Tight-binding model:

® Disorder: perturb only the diagonal entries.

® Skin effect model: correlated perturbations of all the entries; dense matrix model
<= long-range coupling in three dimensions.
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Space-time modulated systems of resonators

® \Wave equation in a space-time modulated systems:

o 1 9 1 p
= ~ _Vv.—V ,t) =0, R teR.
<am(x7t) ot p(x) >“(X ) xeEre

® Y: unitcell; D =U,,cp D+ m; Di=Upep Di +m; Diyi=1,...,N.

® Time-modulation of the resonators:

K, X ERd\f,
,t) = 5 ,t T) = r(x, t);
) {’“rﬂi(t% x € Dj, Rl E+T) = (1)

® Time-Brillouin zone: w € Y{ := C/(QZ); Q = (2r)/T = O(6/?).

® A quasifrequency is a subwavelength quasifrequency if the corresponding solution
is essentially supported in the subwavelength frequency regime.
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Space-time modulated systems of resonators

® Floquet transform in both x and t:

o 1 0
<5 K(x,t) ot v o(x) V> u(x,t) =0,

u(x, t)e~'** is A-periodic in x,

u(x, t)e~wt is T-periodic in t.

® Space-Brillouin zone: a € Y* := RY/A*; Time-Brillouin zone:
we Y =C/(QZ);, Q= (2m)/T.

® As § — 0, the quasifrequencies w = w(«) € Y;* are, to leading order, given by
the quasifrequencies of the system of ordinary differential equations:

1 do;
ZC -2 (= %)
dt Kk; dt

fori=1,...,N. (®;(t) = et 3 &; ,eM?).
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Pseudo-spin effect

® Trimer honeycomb lattice with phase-shifted time-modulations inside the trimers:

l
v . % o8
f 1 %o 09 So 09
L3 2 %08 o0 % o3
%o 09 So 09
. 9% 02
. 2 ° o
I ki(t) =1+ esin (Qt+ 22)
Jj 3
® Dirac cones at the origin of the Brillouin zone:
0.07 0.07
0.06 0.06
0.05
3
:ﬁ 0.04
EUYOB
0.02 o.oz\w
0.01 0.01
0 0
M T K M M r K M
Quasi-periodicity o Quasi-periodicity a
Unmodulated case Modulated case
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Non-reciprocal wave propagation and k-gaps

® Folding of the static band structure might create degenerate points;
® Degenerate points give rise to broken reciprocity;

® Non-reciprocal band gaps and k-gaps:

0.15 0.15 "<>
g =}
= 01 = 0.1
g b
3 3
& 0.05 £ 005
Re(w) Re(w)
m o im(u)
Band gap k-gap
0 0 e
- o - x
-z 0 z - 0 .
« «

® Breaking reciprocity (time-reversal symmetry) = non-symmetric bandgaps =
unidirectional excitation of the operating waves.

® Existence of k-gaps = exponentially growing wave propagation.
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Open questions

® Non-Hermitian time-varying systems of subwavelength resonators.
® Double-near-zero effective properties.

® Competition between the skin effect and Anderson localisation in three
dimensions; non-Hermitian Thouless criterion.

® Space-time localisation.
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Lecture IX: Convergence results for large
systems of subwavelength resonators
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Spectral convergence in large finite resonator arrays

® Relations between the finite structure and corresponding infinite one.
® Spectral convergence of defect modes:

® Any defect mode eigenfrequency of the infinite structure has a
sequence of eigenvalues of the truncated structures converging to it.

® Long-range interactions = radiation in the “spare” dimensions and
coupling with the far field = algebraic convergence;

® No spare dimensions = exponential convergence.

® Spectral convergence to the essential spectrum and band structure:

® Subwavelength resonant frequencies of a system of coupled
resonators in a truncated periodic lattice converge to the essential
spectrum of corresponding infinite lattice.

® Asymptotic distribution of the eigenvalues of the capacitance matrix,
in the limit that its size becomes arbitrarily large.

® Discrete density of states for the finite system converge in
distribution to the continuous density of states of the infinite system.
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Convergence of capacitance coefficients

L 9g 9g 95 95 95D
On@-nO.pn® .0 co v
«
Oy 9g 9 9 9o CtaeY
.0 . 0. )0 . O . quasiperiodic capacitance
matrix
OD OD OD OD OD
@ ®uf) @) ® - | .
: : nverse Floquet transform
@ o, O ¢
© Q‘ ) D 5] Q Df(r) real-space capacitance
-0 o =l matrix
@D @D @D
"®.® .y ® .
@@ @© @®
®-0®.)®.
r Ci(r),r € (0,00) G(r),r € (0,00)
finite capacitance truncated capacitance
matrix matrix
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“Real-space” capacitance matrix

® (C%: "dual-space” representation of the infinite periodic system.

® Inverse Floquet transform =- “real-space” capacitance matrix at m € A:

~ 1 .
m __ o _—ia-m ;o
U7|Y*|,y*cije da, 1<i,j<N.

® (: infinite matrix that contains all the 6’&” coefficients, for all 1 < j,j < N and

all me A:
. AEO El 22 §3
¢=| i ae
. Cc7?2¢ct ¢cv ¢t
. c3c2cteo
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Spectral convergence of defect modes

o
(i) = [ (55,)  xooy] do,
apm J
for1<i,j<Nand mnée l.:={me A||m| < r}, the capacitance matrix for
a finite lattice /,.

® “Dual-space” representation of the quasiperiodic capacitance matrix for the
infinite lattice:

0,y —1 .
G = [ (5 von,] do
® “Real-space” capacitance coefficients at the lattice point m:

A&n _ 1 Cl}ye—iu-m
[Y*[ Sy~

for1 <i,j<Nand meA.

da,

® Convergence of capacitance coefficients: For fixed m,n € A, as r — oo,

rlLrgcC[ (ry=cm—".
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Convergence of capacitance coefficients

* |(Gr)Y, — 6{’1| for increasing size r of the finite structure: algebraic
(d < d)/exponential (d = d) convergence.

® d; < d: long range interactions in the “spare” dimensions.

Relative error

._‘
1S)
IS

10-° . )
10° 10 10?
Size of structure r

Q00000
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Convergence of capacitance coefficients




Convergence of capacitance coefficients

® (C;: Toeplitz matrix of an essentially bounded symbol;
® As r — 0o, the matrices C; and C; are asymptotically equivalent:
® |im |G — G| =0;
r— oo
® ||G|l> and || Gi||2 are uniformly bounded as r — oo.

® For an n x n matrix M = (mj;), normalised Frobenius norm:

n

1
M= = 3 Jmy.

ij=1

® Asymptotically equivalent matrices have identical eigenvalue distributions as
their sizes tend to infinity.
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Spectral convergence of defect modes
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Spectral convergence of defect modes

® Model defect modes through premultiplication by a defect matrix B. For each
mée N, Bn: N x N diagonal matrix

bi" 0 0

0 b - 0
Bm = . . ) . '

0 0 bm

® Diagonal entries b™: real-valued parameters.
® Compact defects: b" =1 for all but finitely many i and m.
® 9%: infinite block-diagonal matrix that contains B, for all m € A.

® Compact perturbation of the identity = spectrum of the infinite structure given
by the solutions to the spectral problem

Blu = Au;
(A = w?).

® Finite structure of size r: Let B; be the block-diagonal matrix (Bm), m € I, and
consider the spectral problem

By Ceu = Au.
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Spectral convergence of defect modes

® Example of a localised defect mode for a system of 31 resonators.

® The eigenvalues of the finite matrix By C; are computed, where C;: capacitance

matrix for a system of evenly spaces resonators and Bt: identity matrix but with
the central entry (Bt)(l)1 = 2.

1 ?

o] I\

ao) I

2

= 0.5 [

)

20

m 0 \\ 4?_&4&%7\ 1 _ \)
0 5 10 25 30

Position of resonators
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Spectral convergence of defect modes
® Example of a defect structure:
® |attice with a single resonator N = 1 inside each unit cell; x > —1;

[ ]
m 17 mio?
b1:
1+x, m=0.

® Eigenvalues of the (infinite-dimensional) generalised capacitance
matrix BE: A\(= w?): an eigenvalue of B¢ iff it is a root of

X O<

la =1,
|Y*| v w2 )\(x ao

® \{: the single eigenvalue of the quasiperiodic capacitance matrix C*
of the unperturbed periodic structure,

51 Vl
1y
|D ‘ [X(’Dl]'
® 3 solution A = Ao(= w3) precisely in the case x > 0 = defect
induces an eigenvalue )¢ in the pure point spectrum of B¢,
corresponding to an exponentially localised eigenmode.
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Spectral convergence in large finite resonator arrays

® |f the infinite structure has a localised mode, there will be an eigenvalue of the
truncated structure arbitrarily close to the localised frequency.

® Assume that B: compact perturbation of the identity s.t. B has a localised
eigenmode u with corresponding eigenvalue A = 3 eigenvalue A = A\(r) of B;C;
satisfying ~
lim A(r) = A\

r—-+oo

® Assume that 9B: compact perturbation of the identity s.t. BC has a localised
eigenmode u with corresponding eigenvalue A = 3 eigenvalue A = \(r) of B C¢
satisfying R
lim X(r) = A

r——+oo
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Spectral convergence in large finite resonator arrays

® Convergence of the difference between the defect frequency computed for a finite
structure and for the corresponding infinite structure, computed analytically.

® Error of the frequency of the defect mode: inheriting the convergence rate of the
capacitance coefficients.

® When d; =1 or d; = 2, there are long-range interactions through coupling with
the far field, leading to algebraic convergence.

® |n d; = 3, there are no “spare” dimensions and the convergence is exponential.
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Spectral convergence in large finite resonator arrays

1 1 1 1+x 1 1 1
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Spectral convergence in large finite resonator arrays

QOO0
QOO0
- Q0 @00
QOOOO

T Dy :QQQQQ
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Size of structure r
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Spectral convergence in large finite resonator arrays

SI25>

10-10

Relative error

0 5 10 15 20
Size of structure r
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Spectral convergence in large finite resonator arrays

® Pointwise convergence to the essential spectrum: Any eigenvalue/eigenvector of
C® can be approximated by eigenvalues/eigenvectors of C¢; Converse not true:
edge effect = greatest effect on eigenmodes within the first radiation continuum.

® Convergence in distribution of the discrete density of states for the finite
M-system of N periodically repeated resonators to the (continuous) density of
states of the infinite system:

18

3

g - 00 OO0 OO
g

clg;14
&

+ Discrete
12 !

—m/L 0 /L
Quasi-periodicity «
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Spectral convergence in large finite resonator arrays

® Weak convergence of C¢ (M x M-block matrix with blocks of size N) to
corresponding (translationally invariant) Toeplitz matrix Cy of the infinite
structure.

® C™: inverse Floquet transform of C% (real-space capacitance matrix);

® ¢: (block) Laurent operator corresponding to the symbol C*:

.0 el o2 3.
c— | -ctc® et
.72 0 et
L c3¢c2¢c10 ..

® (C;: Toeplitz matrix with symbol C%:

c® ¢t ..M

¢l 0 .. ¢M-1
Cy =

M 1tmM o

® (¢, Cy asymptotically equivalent: ﬁ”Cf —CtllF = 0; |ICt|l2, lICt |2 uniformly
bounded.

® (C¢,Cy: identical eigenvalue distributions as their sizes — co.
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Spectral convergence in large finite resonator arrays

® Truncated Floquet transform: (wj, u;), (uj)m: vector of length N associated to
cell meA;

@a= > ()me™™ a; = argmax|(T@)all
mefinite lattice agY*

® Principle applicable to structures that are not translationally invariant:

=
0

=
=)

Frequency w
-
S

+ Discrete +--00 OO0 O OO OO:--
— — Discrete defect
—— Continuous

—
o

1 L Il
—7/L 0 /L
Quasi-periodicity «

® Defect modes in infinite systems of resonators have corresponding modes in
finite systems which converge as the size of the system increases.
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Spectral convergence in large finite resonator arrays

Ru

0 200 400 600 800 1000

Subwavelength physics Habib Ammari



Spectral convergence in large finite resonator arrays

subwavelength f mid-gap frequencies

regime =

band gap

-

w = 0.0571
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Spectral convergence in large finite resonator arrays

® Rate of convergence in terms of the length r = O(M) of the truncated structure:

d) = d = exponential;, d; < d = algebraic.

® Algebraic convergence < long-range interactions due to coupling with the
far-field.

® Convergence of the frequency of the defect modes in a dislocated chain.
® O(r~%7) for the even mode and O(r—3-) for the odd mode:

10°°
5o 5
£107 g
° @
£ 2
o 1.7 & -3.8 i
1 1
107 10-10
50 100 150 50 100 150
Size of structure r Size of structure r

- 00 00 O o 00 00 -
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Convergence results for non-Hermitian large systems

® Parity-time symmetric systems; Edge mode computed for a finite but large
(N = 100) array of resonators having a material parameter defect;

® One dimension: comparison with the explicit formula for the edge mode
frequency.

0.05

0.01

002 5003
=

0.02
0.00

001

—0.02 0.00

S om
005

~0.06

3 000
0.08 “

—0.05
—010

—100 0

100 200 300 100 500 20 10 60 50 100

Subwavelength physics Habib Ammari



Convergence results for non-Hermitian large systems

® Non-Hermitian skin effect.

® Spectrum of the limiting operator: Non-Bloch eigenmodes = generalised
(complex) Brillouin zone
Ve i={(a, B(a)) € Y*XR: Aotif(e) ¢ Rt} A+iB(e) gigenvalue of C78(@),

® Convergence to the complex band structure:

® Systems with complex material parameters can be reduced to Hermitian systems
away from their exceptional points.

® Non-Hermitian systems with imaginary gauge potentials / Non-Hermitian
systems with complex material parameters: fundamentally distinct.

Habib Ammari
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Convergence results for non-Hermitian large systems
® Subwavelength eigenfrequencies:
P 4+ VCiy =0;
V: diagonal matrix encoding the (complex) material parameters; C:
(Hermitian) capacitance matrix.

® Assume that VC: diagonalisable and invertible, i.e., we are away from
exceptional points.

® Change of basis = VC = D = diag(\1, A2).
® Transformation:
G:R—C?

1 1

t (A 28,0, 2t);
® ¢(t) =1 o G(t) satisfies
¢"(t) = D-7H(¥" 0 G(t)).
® = ¢(t) satisfies the Hermitian ODE
"+ =0
as

D(¢"" (1) + 6(t)) = DD(~ 4" o G(1)) + D(t 0 G(£)) = (& + D) o G(t) = 0.



Open questions

® Truncated Floquet transform.
® | ocalised eigenmodes in finite chains of subwavelength resonators.

® Approximations of Fano-type transmition and reflection behaviors by finite
structures.
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Lecture X: When subwavelength physics
meets condensed matter theory and
concluding remarks
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One-dimensional subwavelength physics

One-dimensional subwavelength resonator systems
A chain D of N resonators, with lengths (£;)1<i<n and spacings (s;)i<i<n—1-

Model problem:

w? d /1 d
[{/(X) U(X)+ & <@&U(X)> = 07 X € R.

°
Kr, X €D, pr, X €D,
K(x) = p(x) =
Kk, x€R\D, p, x€R\D.
s1 S s3 SN—1
e T sl BRI S F---l
4 2 3 Ly £n—1 Iy
e L A R I i | |
- — ot — — + + -
Xq Xq Xy X X3 X3 X, X, Xy_1 Xn—1 Xy Xp
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One-dimensional subwavelength physics

® Tridiagonal capacitance matrix:

1 1
S s
[ T TS N
5 S S 5
1 1 12 l 2i _L
2 52 S3 S3
C =
1 1 1 o
SN—2 SN—2 SN—1 SN—1
1 1

SN—1 SN—1
® (C: symmetric, semi-definite;
® KerC = span((1)1<i<n)-
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One-dimensional subwavelength physics

® |V subwavelength resonant frequencies w;:

wi = Vp\/ O\ + 0(5),
(Mi)1<i<n: eigenvalues of the generalised eigenvalue problem
Ca,-:)\,-Va,- 1SISN,

V = diag ((8;)199\,).
® (a;); orthornomal basis with respect to the scalar product of V:
al Va; =§;,1<i,j<N.

o a=(1/\/N, )1
® ui(x): subwavelength eigenmode corresponding to wj; a;: corresponding
eigenvector of C:

N
ui(x) = Y ad Vi(x) + O(6)
j=1

J a,g): J-th entry of the eigenvector a;; V;(x): piecewise linear, supported in
(XJR_I,XJ.LH) and Vj(x) =1 for x € (XJ-L,XJ-R).
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One-dimensional subwavelength physics

® The N eigenvalues of the capacitance matrix C are simple:

0=A <Ao< - < Apn.

® The scattering problem admits exactly 2/N resonant frequencies:

® the zero frequency wo(d) = 0 for any § > 0,
® a purely imaginary frequency w1(d), which is an analytic function of
6 whose leading asymptotic expansion reads:

2
wi(8) = —2i6—b— 4+ O(5%);

V2=t

® the remaining 2N — 2 resonant frequencies are analytic functions of
1 . . . .
02 and their leading-order asymptotic expansion read

1 2
wE(0) = £wpA26? — i(szvla,TBa,- +O(87) for 2 < i < N;
v

B := diag(1,0,---,0,1).



One-dimensional subwavelength physics

Solution at w=(0. 6. 04-1.532644788481847e-05])
2.100
2.075 2
2.050
1
2.025
= 2.000 =0
5 3
1.975
-1
1.950
1.925 -2
1.900 5
~4000 -2000 © 2000 4000 21000 -500 [} 500 1000
X x
3 Solution at w=(0.02722907607244461-6.017239375370905e-06j. aso\unon at w=(0.036310933698717886-1.2016847764701009e-06])
2 2
1 1
X0 ES ————J/\/\/\/\/\/
3 3
-1 -1
-2 -2
-3 -3
21000 -500 0 500 1000 21000 500 0 500 1000
X X

https:
//people.cs.kuleuven.be/~florian.feppon /research /06_subwavelength_resonances.html
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One-dimensional subwavelength physics

® ui,: an incident wave propagating from left to right.

® Transmission and reflection coefficients:

+ — —
Twd) = 20N g, gy H0a) ~ UinCq)
uin(XN) uill(xl )
1.00 1.00 X
075 075
0.50 050
025 T 025
0.00 +- 0.00
-0.25 -0.25
~0.50 ~050
~0.75 -0.75 T
~1.00 ~1.00
0.00 0.02 0.04 0.06 0.08 0.00 0.02 0.04 0.06 0.08
w w
Transmission coefficient R( T (w, §)). Reflection coefficient R(R(w, §)).
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One-dimensional subwavelength physics

® Existence of a spectral gap for defectless finite dimer structures;

® Direct relationship between eigenvalues being within the spectral gap and the
localisation of their associated eigenmode.

® Existence and uniqueness of an eigenvalue in the gap in the defect structure,
proving the existence of a unique localised interface mode.

® Chebyshev polynomials: characterise quantitatively the localised interface modes
in systems of finitely many resonators.

® Dimer structure with a geometric defect:

51 S2 S2 S1 S2 52 S1 52 S2 S1
F-l F-l F=l F-l F=lik=l k-l k-l F-l bl
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One-dimensional subwavelength physics

® Tridiagonal block structure:

a B
1 a P
B2 a B
B2 o B
B a B
C= B2 (n ) B2
B2 a i
B a B
B a B
B2 a P
B &
B1=-—s ", 522—52_1, a:sl_1+52_1, 77:252_1, d:sl_l.
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One-dimensional subwavelength physics

® Eigenvalues and eigenvectors of tridiagonal 2-Toeplitz matrices with
perturbations on the corners:

a+a B O O ... O 0
51 a P 0 ... O 0
MG p )= O e B 0 0 | gRr@mnx@sy

0 0 0 0

e
Q .

coco + -
o

a+a [ 0 0 0
B a B O 0
AGD (0, b1, B) = 0 B2 o B 0 € R2KX2K .
a P
0o 0 0 o0 B a+b
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One-dimensional subwavelength physics

® Uy: Chebyshev polynomial of the second kind;

2 p2_ @2
Pr(x) :— ky ((X_a) _51_52)
% (x) = (B1B2)" Uk 25:5 )
_Z -85
&)= s

® Characteristic polynomials of Agk+)1 and A(a b,

X p(2.5) (x)=(x—a—a—b)P;(x)+ (ab (x —a)— aﬂf - bﬂ%) Pi_1(x);

2k+1

X pfa.0) (x) = P¢ (x) + ((a+ b) (a — x) + ab + B3) P_y (x) + abBiPi_ (x).
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One-dimensional subwavelength physics

(fpa&q)( ) and A(&pv&q

® Two families of polynomials p ah (x): solutions to the

recursion relations

ﬁ(()ﬁpvﬁq)(u) =6, ﬁgﬁpvﬁq)( ) 2uEp + ép ; £q7

Pt () = 2uB ) () = B (),

P Pr—1
a(()ﬁpvﬁq)(u) =&, a\gﬁpxﬁq)(ﬂ) _ (2# + B)Sp + ép ; 5‘77
G ) = 208 (0) - G (),

* B=p2/Br
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One-dimensional subwavelength physics

(a,b)

® )\: eigenvalue of Ay

(e, B1, B2). Corresponding eigenvector:

A(€ps 1 ~(€ps N 1 ~(&p,
x = (q(‘fp BN SN S O R S OF
1

o @ A (0,6 )

® )\: eigenvalue of Ag‘l’b)(a,ﬂl,ﬁz). Corresponding eigenvector:

~ ) 1 A ) ~ ) 1 ~ )
x= (qégp ) (), —5 (@) APt (), 8l %) (), 5 (@) P (1,
1
g @A ).
1

® In both cases, {g = (o — A),&p = (e +a— A).
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One-dimensional subwavelength physics

® Structure of the eigenvectors for the capacitance matrix C:
Let (A, v) be an eigenpair of C and let p := y(X). Then v:

X)) @M (C1)oxCm L (—1)7x®), (-1)7x )T

® x € R?™+1 with &g = (@ — \),& = (a+a— A); o € {0,1} except for
x € span{1} where ¢ = 1.
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One-dimensional subwavelength physics

® Asymptotic spectral bulk ¥ and asymptotic spectral gap I': spectral bulk and
spectral gap of the associated infinite periodic system, respectively.

® Consider a system of repeated dimers (without defect) with N = 2m resonators.
Cy: associated capacitance matrix. Then

- 2323

Y= lim o s
N— oo 2 S1 s1 s2

® [im: Hausdorff limit.

® = asymptotic spectral gap:

2 2
r=(2.2)cr
S2 S1
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One-dimensional subwavelength physics

® v(x): eigenmode. v: localised interface mode at xg, if both |v(x — xo)| for
xo < x € D and |v(xp — x)| for xo > x € D decay exponentially as a function of

x € D.

® C g RAmFIx4mtl: capacitance matrix of the defect structure; (A, v): an
eigenpair of C. Then, there exists |r| > 1 independent of m and A, B,A,B € R

dependent on m s.t.

if y(\)? > 1
(2m=21) — Api 4 By
y(2m=2j=10) _ AJ 4 B,
with A = O(%m) and B = O(r" 1) as m — oo for c1,c2 € R
independent of m. Same asymptotics hold for A and B;
if y(\)? < L

v(I2m=2) — Acos(j) + Bsin(j6),
v(I2m=2=11) — A cos(jB) + Bsin(j6),

with r = €'? and A, B,/Z\, B bounded as m — oo;
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One-dimensional subwavelength physics

if y(\)2=1: r =41 and

v(12m=2j) _ Al 4+ B -,
S2m=2j—1]) _ A,Jl' + gr{ -,
1—m m
withA:W and B = 2427=41) a5 m — oo

mrzfmfr
for c1, c2 € R independent of m. Same asymptotics hold for A
and B.

® Eigenvector in the case when y(\)? > 1: exponentially localised in the interface,
as we can rescale the eigenvector to make

v(12m=2jl) — g,—i + A,

S2m=2i=1)) _ §,=i 4 jipi.

where O(B) = O(B) = O(1) and O(ArF) = O(Ar) = o(rm%l),j =1,---,2m.
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One-dimensional subwavelength physics

® Eigenvector behaviour based on the eigenvalue location:

— 0.10
0.10 4 o(em—27)
p(2m=2j-1)
0.05 X~ 0-051
.
0.00 4 ° 0.00
X
X
~0.05 4
0 x 0051 % em-z-1)
X 2m—2,
~0.10 4 p(2m=23)
" : : ~0.10 1= r : " :
10 60 80 0 20 10 60 80
J J
10-1 4
|074 o
10-7 4
10710 o
X ‘,0(277172_/71)‘
107134 o |um=2i)|
X X
0 20 10 60 80
J
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One-dimensional subwavelength physics

® Perturbed structure of dimers. For N large enough there exists at least one
localised interface eigenvector of C with eigenvalue Ai(N) in the spectral gap I'.

® Monotonicity of Chebyshev polynomials of the second kind: Let k € N, then
kal(X)
Uk(x)
is strictly decreasing for x € (—oo0, —1) U (1, +00) for any k € N.

® = There exists at most one eigenvalue of C lying in the asymptotic spectral gap
= (2/s,2/s1). In particular, for m large enough, there exists exactly one
eigenvalue in I.
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One-dimensional subwavelength physics

® Convergence: Consider a perturbed structure of dimers. For N large enough

there exists a unique interface mode with eigenfrequency wi(N) in the band gap.

The associated eigenfrequency wi(N) converges to

9 14 9 3 3
Az —tzt+t—+—
s S1s2 S5 SIS

® |n particular, for N big enough,

Wi = Vps |0

N =

exponentially as N — oo.

Jwi — wi(N)| < Ae BN

for some A, B > 0 independent of N.
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One-dimensional subwavelength physics

® Convergence of the interface mode eigenfrequency as the structure size increases:

T
+
10729 4
*i
*t
1077 1 +y
<) +y
E +,
© 10784 +y
*
—11 ++
10-11 4 +y
+
i
T T T T
0 25 50 75 100
N

Subwavelength physics Habib Ammari



One-dimensional subwavelength physics

® Asymptotic spectral gap and interface mode:

0000 0.75
2.5 1 0™ o
)
“00
2.0 eooe 0.50
1.5 0.25
1.0
0 x 0.00
0.5 .,00““
o° —0.25 1
0.0] sones
0 10 20 30 40 0 10 20 30 10
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One-dimensional subwavelength physics

® Stability of the interface mode:

0.20

0.10 4

[lvi = ill2

0.05

0.00 4

T T T T T
5.0% 10.0% 15.0%  20.0% 5.0
Perturbation size

T T T
% 10.0% 15.0%  20.0%
Perturbation size
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Concluding remarks

® Mathematical foundations of subwavelength physics:

® | ocalisation and topological properties of Hermitian, non-Hermitian
and time-modulated systems of subwavelength resonators.
® Dirac, exceptional point, fold degeneracies.

® Unified capacitance matrix framework for studying systems with long range
interactions.

® (lassification of non-hermitian problems into reciprocal and non-reciprocal ones.
® Non-reciprocity can be achieved by time-modulations.

® Many demonstrated quantum phenomena are not particular to quantum systems.
® First principle derivations for systems of subwavelength resonators.

® Subwavelength physics meets condensed matter theory in one dimension.

® |ong-range interactions play key role in higher dimensions.

Subwavelength physics Habib Ammari



