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Simple integral equation example
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lterative linear algebra solution...



Well-posed Integral Equation Formulations

CFIE-R

%+ICJ+€/% (mnxR)oTI=nxH —&k (nxR)(nxE

Theorem (General surface, arbitrary wavenumber k):
Using R = SiK7 K = Z]{/Z we have (S'L_i’(x) = fl Gk(x—X')'Li’(X’)da(x’))

— CFIE-R are uniquely solvable;
— CFIE-R < Invertible diagonal operator + Compact operator

— Small iteration numbers

Bruno, Elling, Paffenroth and Turc, J. Comput. Phys. [2009]



Chebyshev rectangular-polar integration plus
compressed FFT-acceleration

Polynomial refinement in rectangular region about singular or near-singular points
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Geometry Handling
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Topics

Interpolated Factored Green Function (IFGF): FFT-free acceleration algorithm
OpenMP on 28-core server and MPI on 1680 cores

Metamaterials: large computer cluster, photonics modeling

Time-domain frequency-time hybrid solver

Long-range time-domain propagation over terrain

Long-range propagation: Screened WKB




Topics

» Interpolated Factored Green Function (IFGF): FFT-free acceleration algorithm
— OpenMP on 28-core server and MPI| on 1680 cores

— Metamaterials: large computer cluster, near cm-scale photonics modeling

— Time-domain hybrid solver (time-domain from frequency-domain)

— Long-range time-domain propagation over terrain

— Long-range propagation: Screened WKB (S-WKB)



Simplest example. Discretizing the integral...

Gr(r, e \pu(rdS = —p™(r) res
S

...means to combine the result of many source points x,
onto target points x; .

Source Box B(xg, H)
| O




Accelerated Scattering evaluation:
Interpolated Factored Green Function (IFGF)
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Analytic Factor

(slow radial variation)

.to evaluate an Ng-source field Is(x) at Ny positions x;

(2D figures)
Ns
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Slow variation! Instead of evaluating every single source at every target, we
can just evaluate at a few points and then interpolate!




IFGF Factorization in detail

ezm|:1:—:c’| ezm|x| T
Green Function Factorization: E— 7| pur(le—a'|=|z])
|z — 2| |z [z — |

First factor is a common factor (independent of the source position x')
Second factor is slowly oscillatory (and more and more so for large |x|: analytic at oo!)
Second factor is nonsingular (finite) even as x,x’ = 0, aslongasx’ <nx, (0 <n < 1)

Example
1
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C. Bauinger and O. Bruno, JCP [2021]
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Error remains constant across levels
as the cost is optimized

(First installment: derivatives of the analytic factor gg)

Theorem. For 0 < s <7 <1 and for £ =s, { =6 and £ = ¢, we have

an
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Error remains constant across levels
as the cost is optimized

(Second installment: Interpolation bounds)

Theorem. For 0 < s <n <1 and for (¢ =s, £ =60 and £ = ¢, we have

0"gs
den

Chebyshev interpolation in ¢, 6 and s
Theorem.

l95(x(s,0, ), a") = If T I3 gs(x(s,0,¢),2")| <
oF:
gs
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Conclusion: for kH > 1 keep error constant by letting

oo

As = A2, Ay —ANp/2 and A, > A,/2 as H — 2H!

For kH < 1 keep A;, Ag and A, unchanged.



Cost reduction: interpolate only to cousin surface points and
parent interpolation points!

* Only interpolate to cousin surface points ~
(non-neighboring children of the parent’s y. \
neighbors) e

VA
/ //“\ Vi
e Points close are either covered directly or Ed
|

by levels with smaller boxes
Cousin boxes to the

box B€2,1) in gray

* Points farther away are covered by levels N
with larger boxes: the information is carried ¥ X
over via the parent interpolation points! <




Error remains constant across levels
precisely as the cost is optimized!

By By By /’%)

As we move from one level to the next larger level. .. ... cost per level remains constant!

— E.g. for kH > 1 (case kH < 1 is analogous but less expensive):

- H—2H

S A, A2, Mg Ag/2 and A, 5 A, /2 ~ log NV levels
— Relevant boxes: |Rp| — |Rp|/4 — N operations per level

— Relevant cone segments per box: |R¢| — 4|R¢|

— O(Nlog N) overall operations

— Cousin points (interpolation): |V| — 4|V|

— Parent cone interpolation points (interpolation): |P| — 4|P)|



Simple!

Algorithm 1 IFGF Method

1\ \Initialization.

22 ford=1,...,D do

3 Determine relevant boxes RY, and cone segments RY..

4: end for

o

6: \\Direct evaluations on the lowest level.

7. for BY € RE do

8: for r e UBP NIy do > Direct evaluations onto neighboring surface points
9: Evaluate I?(x)

10: end for

11: for C]E.._ € ReBY do > Evaluate F' at all relevant interpolation points
12: for r € XCIE,T do

13: Evaluate and store FP ().

14: end for

15: end for

16: end for

17:

18: \\Interpolation onto surface discretization points and parent interpolation points.

19: ford=D,...,3 do
20: for Bl € R}, do
21: for z € VB! NT'y do > Interpolate at cousin surface points
22: Evaluate I (x) by interpolation
23: end for
24: if d > 3 then > Evaluate F' at parent interpolation points
25 Determine parent Bf_l =PB{
26: for ij;l € 'R(;Bf_l do
27: for z € XC;E;' do
28: Evaluate and add Fy(z)G(x, 2{) /G(x, 2§ ")
29: end for
30: end for
31 end if

32: end for
33: end for




Ubiquitous use of FFTs in previous
integral acceleration methods

FFTs make parallelization challenging: well-known problem for massive parallelization.
Obvious impact of FFT in equivalent-source methods. FMM methods also rely on FFT.
References [1], [2] indicate that
“the top part of the [FMM] octree is a bottleneck”.
Reference [3] calls parallelization “bottleneck” the part of the FMM relying on FFTs, as it suffers
from “lowest arithmetic intensity” and “likely suffering from bandwidth contention”.
Reference [4] mentions two alternatives to use of FFT in the FMM which, however, it discards as

less efficient than an FFT-based procedure.

B. Engquist and L. Ying. Fast directional multilevel algorithms for oscillatory kernels. Journal of
Scientific Computing, 29(4):1710-1737, 2007.

L. Ying, G. Biros, D. Zorin, and M. H. Langston. A new parallel kernel-independent fast multipole
method. Proceedings of the ACM/IEEE SC2003 Conference on Supercomputing (SC'03), 2003.
A. Chandramowlishwaran, S. Williams, L. Oliker, I. Lashuk, G. Biros, and R. Vuduc. Optimizing
and tuning the fast multipole method for state-of-the-art multicore architectures. In 2010 IEEE
International Symposium on Parallel Distributed Processing (IPDPS), pages 1-12, 2010.

N. A. Gumerov and R. Duraiswami. Fast Multipole Methods for the Helmholtz Equation in Three
Dimensions. Elsevier Science, 2004,



Topics

— Interpolated Factored Green Function (IFGF): FFT-free acceleration algorithm
» OpenMP on 28-core server and MPI on 1680 cores

— Metamaterials: large computer cluster, near cm-scale photonics modeling

— Time-domain hybrid solver (time-domain from frequency-domain)

— Long-range time-domain propagation over terrain

— Long-range propagation: Screened WKB (S-WKB)
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IFGF- vs. FMM-based full solvers

N NIVAS # Comput. :C:oes
3.8 x 1074

128 A
2,500

2.5 % 1073

~~J| Sample Stats. (per iter.)
“2%|  IFGF/Rect-Polar 14,155,776
o ._\“‘-—‘ ._'.
{23355y FMM/QBX ~ 14,000,000 | 64 X

SV I F LT | AT R Sedp e /

' f:-:.":{":.': e -"‘.::“:‘{'?-:x -\ Rect-Polar, Bruno and Garza, JCP [2020]

a2 e e o SO SN OSSR / FMM accelerated QBX, Wala and Kléckner, JCP [2019]
TS ""'f;:“,___::,—‘l‘:-_’;&—-'ifl S ::;‘“:::‘f-‘“ _'__‘;_:“ —_—. IFGF/Rect-Polar Jimenez, Bauinger and Bruno, arXiv:2112.06316 [2022]




Comparison of BEMFMM and IFGF: acceleration of matrix-vector multiply

N
I(zy) = Z amG(ze, xm), £=1,..., N.
m=1

Comparison vs. BEMFMM authors’ code download, in our computer cluster. (Only small test provided — low speedup.)

BEMFMM IFGF BEMFMM /TFGF
IFGF: O(N log N) chp!exity IFGF: Strong Scaling
521;56870 cores, frequ‘encv proportl‘onallv m.c:e'ajed) N 36 1 ,2 24 393 : 2 1 6 18655 : +;ﬁzz Sph;mid. IIIII : Kj‘
|| 1 Node (s) 14.95 1.60 9.3 SEER
e || 30 Nodes (s) 4.99 0.12 41.6 : =gt |
710851 / Oog )| Speedup 300 1333 Z :/,Kf‘v'”'/flk_/i:;rimprovlement ‘per‘sists‘.._:
N o o Comparison with the BEMFMM published results T
Ratio: 1.07 Inv Ratio: 16.87 Ratio: 84
N A £ T (s) | # Comput. Cores Memory
IFGF | 2,147,483,648 | 1,389 A | 6 x 10~3 | 877 1,680 | 10.4 TB
CBEMFMM | 2,300,067,840> 1,389 A |(Unspecifiedy 52 131,072

4 (Largest problem considered) 4 Configured for 1 x 107 4 (> 500 TB available)

Parallel IFGF: C. Bauinger and O. Bruno, JCP [2023]
BEMFMM: “Extreme scale solver...” Abduljabbar, Keyes et. al. SISC [2019]




Speedup

Comparison of BEMFMM and IFGF: acceleration of matrix-vector multiply
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—
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BEMFMM, SISC [2019]. Sphere problem. (Acoustic size not specified.)
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Topics

— |FGF Parallelization approach: space-filling Z-curves and cone-segment parallelization
— OpenMP on 28-core server and MPI| on 1680 cores

» Metamaterials: near cm-scale photonics modeling, optimization and design

— Time-domain hybrid solver (time-domain from frequency-domain)

— Long-range time-domain propagation over terrain

— Long-range propagation: Screened WKB (S-WKB)
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Adjoint Optimization

(gradient descent; one solve per full gradient)
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O. Bruno and E. Garza [2018]



Wavelength Splitting Grating Coupler

GOAL: Maximize/minimize (resp. minimize/maximize) the amount of
1.3p light (resp. 1.55u light) going to the right/left (resp. left/right)

—

- -

-

Single solve requires
6.4 min in Lumerical
(commercial FDTD solver)
Vs.

= 10 sec in our solver
(at comparable accuracy).
Optimization is not
available in Lumerical.

P2l 2 Ll G B O L e Gl .

42.7% 0.3% 0.04% 42.2%
A= 1.554 A=1.3u

Left-right symmetric performance, as desired!

Optimized Wavelength Splitting Grating
(multiple heights) Air (n=1)
= 5 s R | M B e Three heights

ST S | e e 1 e s 3 e T B e o B e e  hel

Si02 (n=1.44) -

Bulk Silicon (n=3.49)

O. Bruno, E. Garza, C. Sideris, [2018]



Negligible termination errors
Windowed Green Function (WGF)
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Design method: Sideris, Garza, Bruno [2019]



Scattering in presence of layered media

F ST

(I+T)J=fme

Windowed Green Function (WGF) method

Preliminary idea: solve (f + Tw) J = f"¢ instead

Exact equation: (_f + Tw) J=f" T —w)J
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/,.. ., :-e\ = 107 ¢ \\a\
— — — = —— =72 ~ .,
‘ 107 a=1l4 .
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gi

..red beams are not accounted for!
|dea: approximate the exact equation (f+ Tw) J=f"—T1—-w)J

(F 4+ Tw) g = 7 — 71— ) o

Closed form + bounded integrall

Bruno, Lyon, Perez-Arancibia, Turc [2016]



WGF method: two-layer problem

Solution times compared to Sommerfeld-integral layer-Green function approach

Solution times incidence angle o = /32
k. Sommerfeld Int. WGF Max error
1.0 0.883962 secs. 0.285474 secs. 9.44E-05
3.0 2.850011 secs. 0.239336 secs. 9.58E-05
10.0 84.728028 secs. 0.769704 secs. 9.48E-05
20.0 146.709174 secs. 1.348077 secs. 8.47E-05
Error dependence on the angle of incidence Error dependence on the window size
Err.ors fpr ﬂXEd'WmeW size and Errors for fixed incidence angle and
fixed integration parameters fixed integration parameters
@ Relative error w Relative error
/4 8.492047E-06
/ 4\ 1.582366E-02
m/16 9.632631E-06
8\ 9.460171E-05
/64 7.274729E-06
/ 16\ 2.121492E-07
/256 7.176513E-06
/ 32 1.077599E-09

/1024 7.170516E-06
super algebraic convergence




Efficient Solver Strategy Based on Windowed
Subproblem Decomposition

Optimization requires multiple efficient direct

solutions 0) w0 A =10

Windowed solvers - c ' =

* Partition large or even infinite domains ,.-'; 1o ¢ \ "‘-.‘

leading to efficient concurrent solves VAN Gaussian Beam N

* Minimize edge effects through smooth T'ys

windowing N LT LI LT L L Output Mode
Qg: Silicon (ng = 3.48) —>

Objective gradient calculation: Qy: Oxide (ny = 1.44)

* Adjoint integral method 1‘247' 4: Silicon Substrate (n3 = 3.48)

Sideris, Garza, Bruno [2019]



Grating Coupler Wavelength Demultiplexer

Fabrication and Measurement:
Hajimiri’s lab (Caltech)

(Sideris, Bruno et al.)

Design method: Sideris, Garza, Bruno

Right Left

o . % fiber coupling

o efficiency

0.35 \

0.34 ‘I

025 {

02 |

015

0.1

0054

DI,; 125 13 13 .154 14 15 1% 16 195
lambda(microns)

0, =0, CM11550nm =0, CM2 1550nm

Absolute insertion losses: 3.77dB for

s 1310nm port and 4.7dB for the
1510nm port. Isolation: ~10dB at

each frequency (measured power at

© s oo the correct port divided by

‘ » * measured power at the wrong port).

0,=0, CM11310nm

Minimum feature size: 160 nm
(suitable for scalable standard
foundry process. e beam

. Sideris, Bruno et al.,
lithography not required.)

Nature Commun. Phys. [2022]




Waveguide Taper / Mode Converter

— 15 min single core run

— 99% efficiency
Bruno, Garza and Sideris [2019]

Reference: Yablonovitch et. al [2018]

S0,

— FDTD-based _
— 35.7 hrsingle core equivalent

— 99% efficiency I
— (2hr 33min on 14-core) L

.....
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Adjoint Optimization

(gradient descent; one solve per full gradient)

ceooeoco ng:-
CHIDO & = = -uﬂ
OO0 000O0O e =0
e 0o 0 NI
O OSDWw = & = o 3
D - o000 » -

Do 0000 =0
- Y N R-R=ToY- X
mlel-EeNaReRal— Tl
(s FoloTolulelulolela

(efmlolalo oo alee
OO0 000000
CIOD0oODOD00
oo 0DD0DO0es=0
Do =D =
OO0 = ==}
e o o QU A¥Ioo
COOODOID0Oe = o
D00 & = = -ﬂq
Ceess nﬂﬂ{}::.::.

O. Bruno and E. Garza [2018]



. . . . . g & 0 o
Adjoint Optimization .
Array of Elliptical Cylinders 0 0 o o
(gradient descent; two solves per full gradient) © 0 o ©
Pseudocolor ©
DB: u_red_totsilo
Cycle: 0
Var u_int
— 8.000
6.000
4000 8
2.000
0.000
Pseudocolor 6
DB: u_green_totsilo
Cycle: 0 7]
Var u_int 8
—a000 £
U
.\%
4
b

Pseudocolor 2
DB: u_blue_tot.silo
Cycle: 0
Var, u_int
— 4.000
— 6.000
4.000
(]
2.000
0.000

Objective Function: Weighted sum of point intensities:
Ia] = wb‘ub(xb)P + fwg‘ug(xg)ﬁ + wv“ur(x'r)‘z

o O 0 O

e}



Single-Objective Optimization

SiO, nanoposts in transparent matrix

Bruno, Fernandez-Lado, Garza, [2018]
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Multi-objective Wavelength and Polarization Splitter
TiO, nanoposts in SiO, matrix. Array size: 2,439 (A, )
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Double Wavelength Lens

A= 780 nm
a-Si posts, ref. index = 3.66
Fused silica substrate, ref. index = 1.453

A= 915 nm
a-Si posts, ref. index = 3.554
Fused silica substrate, ref. index = 1.453
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40x40x1.7 microns
2 layers x 10,261 posts = 20,522 posts




OpenMP IFGF-Accelerated Dielectric Simulation: single node (28 cores)

(Previously run in a 30-node 56 core/node computer cluster. Preliminary results; work in progress)
A=915mm

A=780 nm

780 nm light focused at (0,-10,91.425) microns

Two-layer 20k-post geometry: run time: 2.6 hr/iter, 28-cores, 78.8 millionunknowns,

20 GMRES iter, total memory: 146 GB . .
C. Bauinger, O. Bruno and E. Jimenez, [2021]



Complete Hybrid OpenMP/MPI Solvers: 41k-post geometry

— (Preliminary results; work in progress)

Var: |EIA2

420 um

Device designcourtesy
Prof. Arbabi

Ao= 780 nm, posts ref. index = 2.5, substrate ref. index = 1.47

One-layer 41k-post geometry:

run time: 15.7min/iter, 16 nodes (28-cores/threads)
per node, 448 total cores),

157.6 million unknowns

66um X 66um X 1.1um



Complete Hybrid OpenMP/MPI Solvers: 82k-post geometry

IFGF-based acceleration

Pseudocolor
Var: [EIA2

5027

377.0

— 1.780e-06

-

420 um

One-layer 82k-post geometry:
(28-cores/threads per node, 448 total cores),
315.3 million unknowns

94x94x1.1 microns



Topics

Interpolated Factored Green Function (IFGF): FFT-free acceleration algorithm
OpenMP on 28-core server and MPI on 1680 cores

Metamaterials: large computer cluster, photonics modeling

Time-domain frequency-time hybrid solver

Long-range time-domain propagation over terrain

Long-range propagation: Screened WKB
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Topics

— |FGF Parallelization approach: space-filling Z-curves and cone-segment parallelization
— OpenMP on 28-core server and MPI| on 1680 cores

— Metamaterials: near cm-scale photonics modeling, optimization and design

» Time-domain frequency-time hybrid solver

— Long-range time-domain propagation over terrain

— Long-range propagation: Screened WKB (S-WKB)



“Hybrid” Time-domain from frequency domain

Time-parallel, time-leaping, wave equation/Maxwell solver

5 Freq. Domain vs. Time Transients:
0“u

—— = 2Au > Atpy, + k2 thy = 0

ot? (Fourier Transform)

u(r, t) — ww( ) ot

No need to discretizgspace '%l ‘“i h Il |I|“ ﬂi)mm“&. N““
) VOt 1 T

Spectrally accurate in time l(

i

el [u(r, )]

Windowing and recentering

High-frequency time integration Anderson, Bruno and Lyon, SISC [2020]



Smooth Incident-Field Time Part|t|on|ng
BN
XX

— Use a partition of unity to decompose the long duration signal
u'¢(x, t) into multiple relatively short duration signals which
require only a fixed discretization in frequency space. .WWW

T | | ti+h | |
R = [ wnou (et = [ St et WMMMM

tr,—h

h
— eiwtk / Wi (t -+ tk)umc(aj, t+ tk)eiwtdt
—h

— Using the same discretization in frequency space for each time-
windowed problem, the Helmholtz solutions at each frequency may
be reused.

h
/ wi(t + tp)u™(z,t + t,)etdt —>  Gr(z,w)

—h



Time evolution via FFT-based “scaled convolution”

After time windowing and recentering, u*¢(x, ), and thus, the solution
u(x, w), become a slowly varying, approximately band-limited functions of w:

00 %4
u(x,t) :/ u(z,w)e” “tdw z/ u(z,w)e” “dw

— 00 —W

Higher frequency integration for larger t! Substitute u(x, w) by its truncated
Fourier Series approximation in w:

N/2—1 W N/2—1

u(x,t) ~ Z cm(m)/ el W (M=t gy = Z Cm () (2Wsine(at —m))

m=—N/2 -W m=—N/2
Then, discretizing in t we obtain a “scaled convolution”:
N/2-1

u(x, tp) ~ Z cmbge—m, Wwhere bq:QWsinc(q)
—N/2

Use FFT-accelerated Fractional Fourier Transform-based

scaled discrete convolutions



Benefits

Overall cost: linear in time and proportional to the cost of the frequency
domain solver. Less expensive asymptotics than FDTD.

No time-domain numerical dispersion error (!!).

Natural Parallelism for frequency-domain solutions.

Natural Parallelism in time! (cf. P. L. Lions “para-real” algorithm).
Time- and Space-Leaping (!!).

O(1) cost for solution sampling at arbitrarily large times (!!)

Use of absorbing boundaries, PML, etc., not necessary.

High-order accuracy (periodic time integration).



Example: High-altitude glider
NASA's X-24A Lifting Body

(Bruno and Garza, “Rectangular-polar integral solver”, arXiv [2018])



...the Fast-Hybrid method produces solutions in the time domain

Anderson, Bruno and Lyon [2018]




Cost comparisons** with...

.time-domain integral equations and convolution quadrature
Significant advantages even for short (Gaussian) incident pulses

(worst case for hybrid method)

0.2 —
0.15 |
— €] oc CPU Time (hrs) | Mem (GB) | = o1
Hybrid method (unaccel.) | 2.2-107% 4.3 1.6 F 0.05
[BK14] (accel.) 2.1-1073 40.1 56.8 0
0.05

— llel]so Wall Time (mins) | Mem (GB)
Hybrid method (unaccel.) | 1.6 - 10~7 4.1 1.2
[BGH19] (unaccel) ~107 101.75 290

[BK14]: L. Banjai and M. Kachanovska, Fast convolution quadrature for the wave equation in three dimensions, JCP, (2014)

[BGH19]: A. H.Barnett, L. Greengard, and T. Hagstrom, High-order discretization of a stable time-domain integral equation
for 3d acoustic scattering, JCP, (2020)

**For full details concerning these comparisons see the arXiv publication

[ABL20] T. G. Anderson, O. P. Bruno and M. Lyon, High-order, Dispersionless *"Fast-Hybrid" Wave Equation Solver. Part I: O(1)
Sampling Cost via Incident-Field Windowing and Recentering, SISC, (2020)



Challenges Re. near-resonant cavities: Part 1

Large increases in
GMRES iterations as the
apertures tend to close




0
e

Frequency-domain resonant
scattering problems

(Obtained by experimentation)

Vo
A

Bruno and Lintner, Radio Science [2012]




A menagerie of eigenfunctions

Dirichlet case (Interior problems)
Au = —k?u, x € () ;
u =0, rel ANCHERN ""'.\‘:“\;T:'.'-"1*"loﬁﬁ$$?7é::":f' R

/ Gr(x,y)p(y)dsy =0 forx el
r

w

wr

o
)

Real singular k (integral): eigenvalues .f -
10 . ; i . i o \}\\‘ -k - -
) ) .f;o;. { '.\hs-;;\‘ oY
Yo ». %s W ISR \ \
. ’0. e LM% — %~
' ’ ,. = ‘.‘. -- e
Neumann on Left; Dirichlet on Right
A = 10.005, 97295
‘; I - = -
N . -
Complex singular k (integral): scattering poles . .' " % /. \ . .
B S K L S
. S s 9 -
0.7 ‘.‘ . “ . . '
0.6 & 4 - - . . . ‘ - - -

-Im(K)

Akhmetgaliev, Bruno and Nigam JCP [2015]



New approach
(Interior and exterior problems, including cavities with apertures)

F = | Gi(z, ds,, cl
k(] (x) ‘/I, k(Y)Y (y)dsy, @ Obtain AAA rational interpolants.

Sk)=u'F k_lfv.,, where wu,v € C" are fixed random vectors Their poles closely approximate

eigenvalues/scattering poles!

Jomp DEERE
3399

Bruno, Santana and Trefethen, in preparation [2024]
(Available in arXiv soon)

Eigenvalues/scattering poles are poles of S(k)

Logl0 Error

) 50 100 150 200 250
Number of frequencies k used along Ca



Cavities with apertures
(Exterior problems!)

Trial and error scattering frequency =i .‘ e T . el .‘ % = i Actual scattering pole
(Bruno and Lintner, [2012]) (. JUBSH _  HliiE (Bruno, Santana and Trefethen [2024])
k = 400 Y, e 4 e k = 399.969480881




Multiple-scattering time-domain methods

Near-resonant cavities can take many Partitioning the cavity boundary into
GMRES iterations to converge, which multiple non-resonant parts can speed
impacts the computational cost of the up frequency-domain solutions.
frequency-domain solutions.
| rh : : F;;{ :
III_II r A _1 P W
F | 4 I
! 'IE’ !
Overlap
N v
S
i .ﬂlf i
I I
I _JI .IIIIE
iz

A “multiple-scattering” methodology can be used to recover the correct time-domain
behavior from the partitioned boundary segments (see numerical examples next slide)

Bruno and Yin [2022]



Multiple-scattering techniques for interior-like problems

roEM

Error

¢ = 4 &® 8 1D Bruno and Yin, Math. Comp. [2023]




Topics

— |FGF Parallelization approach: space-filling Z-curves and cone-segment parallelization
— OpenMP on 28-core server and MPI| on 1680 cores

— Metamaterials: near cm-scale photonics modeling, optimization and design

— Time-domain frequency-time hybrid solver

» Long-range time-domain propagation over terrain

— Long-range propagation: Screened WKB (S-WKB)



Radar system illuminates airborne target in presence of terrain

Time domain

e

Directly illuminate the target . n——

Additional multiple scattering, as needed

7 km ~ 47,000 A

Direct and indirect illumination of target

Windowed Green Function method (WGF)

(Bruno, Lyon, Arancibia, Turc, SIAP [2016])

3 ) v/'/?-—-‘ .
= -

Solve for scattering from target



View of terrain toward radar source from aircraft







Near Field scattering from 10m x 10m WGF ground elements

Windowed Green function!

Note that the strategy relies on windowing in space and time

(The time-windowing is accompanied by re-centering.)




Radar system illuminates airborne target in presence of terrain

Time domain

e

Directly illuminate the target . n——

Additional multiple scattering, as needed

7 km ~ 47,000 A

Direct and indirect illumination of target

Windowed Green Function method (WGF)

(Bruno, Lyon, Arancibia, Turc, SIAP [2016])

3 ) v/'/?-—-‘ .
= -

Solve for scattering from target
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Combine Frequency Domain solutions to recover Time Domain

Normalized return for aircraft alone

—————

10

12 14 16 18 20

Original Signal - Linear chirp waveform

Time Domain Solver

Normalized return for aircraft plus indirect ground scattering

Bruno and Voss, In progress



«USGS

science fora changing workd

TNM Download (v2.0) Help Custom Views™ Share Link ContactUs

Comparison to experiment: NIST 5G compatibility study for Aircraft carrier-based AN/SPN-43 ATC radar @ 3.55 GHz
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Experimental data: 3.55GHz spectrum observations (NIST Technical Note 1954, [2017]




NIST Measurement 3.55 GHz Pulse Power over time (ps)
AN/SPN-43 Equipment

Eoe sand . .
o Measured Data Simulation
. 4 | (Manifesting oceanic/terrain multipath)
3'- . - .
= Direct Line of Sight
_ e %25 Full Multipath
ﬁ}'a = La g 2
v i g
L ¥, San Diego <15t
/ _ ': Coronada
' i1
- : . 75 Bor 1F
/ 25km Chula Vists
o 05+
Model Direct Line of Sight and Multipath for a 25km radar transmission g@ .
A ——

tipath flections from...
ithe ocqénf_‘(ﬂqt), and the
.(USGS} sloped terrain near antenna

Goc

High-fidelity AN/SPN-43
model source

#*

Long-range WGF-based propagation over terrain.
USGS-provided digital elevation maps + smooth ocean




AN/SPN-43

1.396 us Pulse Duration —

Additional secondary scatterer (large ship)

Measurement ﬂ

Simulation

4us

Bruno and Voss, in progress



Topics

— |FGF Parallelization approach: space-filling Z-curves and cone-segment parallelization
— OpenMP on 28-core server and MPI| on 1680 cores

— Metamaterials: near cm-scale photonics modeling, optimization and design

— Time-domain frequency-time hybrid solver

— Long-range time-domain propagation over terrain

» Long-range propagation: Screened WKB (S-WKB).



EM propagation. E.g. f = 0.3 GHz—100 GHz - A = (3 - 10° km/s) / f = 100 cm—0.3 cm

[E.g. 40 km at C-band (A = 5 cm) — 800,000 A.] 104 }\— 107 }\

SUB-REFRACTION

> 0/km STANDARD REFRACTION
AN
g ~40/km  SUPER-REFRACTION
<-79/km
TRAPPING
<-157/km DUCT
e
— — — — — — ‘ — —
&
q‘?& i
& oS
&L & LN STANDARD
<& S 99 Q@Q‘ TANGENT

Schematic: Tepecik and Navruz, Int. J. Electron. Commun [2018]



3D ocean acoustics. E.g. 4 Hz—100 Hz > A = (1500 m/s) / f = 15 m—400 m

2D sound speed field along a ray 4Hz transmission loss evaluated via a parabolic equation algorithm

— = e S m—— A
1523 B e o —— e —— - g = 70 - ‘
- - ™ - 7 = . . .

1517 = -e

800 1600 2400 3200 4000 4800 5600 6400 7200 8000 8800
Range (km)

| -

=" Simulation (Parabolic Approx.): Heaney and Campbell, JASA [2016]1’:_-_._

——



3D seismology. E.g. 20Hz—50Hz - A =250 m—40 m

v (m/s) | f (Hz) | A (m)
2000 50 40
3000 40 75
4000 30 | 133
5000 20 | 250

Abgrall and Benamou, “Big ray-tracing and eikonal
solver on unstructured grids...” Geophysics [1999]

5354

0pLt

¥ \ 1
Wy

0 1000 4000




Millions of wavelenths in electrical/acoustic size

Emblematic example: Simple geometry, medium-size electromagnetic atmospheric propagation problem.

Smooth refractivity variations n = n(x, z).
A

200 m ™

—

Az AmJ Additional characteristics: varying/rough bottom and upper interface, 3D, larger range/height, etc. 200 km T

This example: in C band (A = 5 cm): 4,000,000 A X 4,000 A in electrical size.

Direct numerical simulation: unfeasible in 2D, and even more so in 3D

Physical Optics and WKB (Wentzel, Kramers, Brillouin [1926] and Jeffreys [1923], Keller et al. [1956], h
Born and Wolf [1959], Babic [1963], Kravtsov (1964), Maslov [1965], Ludwig [1966], Arnold [1967],
Hormander [1971], Leray [1972], Thom [1972], Berry [1975]...): Ray tracing and energy transport.

Uniform expansions (in free-space, based on multiple derivatives of the unknown generalized phase). More later.

—

—_

Parabolic Equation (Leontovich & Fock [1944], many subsequent versions and improvements,

including Wide angle parabolic approximation following Tappert [1973]): Factors out forward incident ~ —

beam and eliminates back-propagation in finite-difference and Fourier-based contexts.

Phase-Screen Method (Wu [1998]): Assumes constant refractivity along each vertical volumetric z-screen.

Gaussian Beams (Babi¢ and Buldreyev 1960’s, Hormander [1971], Babi¢ and Pankratova [1973], }
Ralston [1976, 1982], Popov [1982], Tanushev, Engquist, Tsai, [2009]): Some details later.

Kinetic formulation: (P.-L. Lions and Paul [1993], Markowich and Mauser [1993], Ryzhik,
Papanicolaou and Keller [1996], Engquist and Runborg [1996]): Some details later.

Eulerian-Lagrangian grid-centric algorithm. Some details later.

Dynamic Surface Extension: (Steinhoff, Fan, and Wang [2000], Ruuth, Merriman, and Osher [2000]): }

Cusp, swallowtail and butterfly catastrophes
(out of the seven Thom’s Elementary catastrophes)

Caustics. 0
/"

Az < \/4, Ax ~ (2 - 50)
(Ax < 12.50)

Finite differences (dispersion),

or Fourier (lowest order, narrow).

Second-order phase approximation.

Particle density.

Grid-centric algorithm.



Classical

WKB Approximation

Au(r) + k*e(r)u(r) =0

WKB Ansatz:

u(r) = e*vr) (Al(r) +

vk (ik)?
log — log

), At

Curved rays as a
broken line limit

0
ks
07
ko

03

k3

The main cause of breakdown of the geometrical ray approximation is caustics
(A1 = o0), [...] interfaces, critical points and shadows. Higher-order terms in

aN42 T 2 the asymptotic ray series are of little use |[...]
(Zk ) _(vw) o €(r)i| C. Chapman, “Fundamentals of Seismic Wave Propagation,” [2004].
N+H1 T 2
(k)T 2V - VAL 4 A V2] .. st caser u(r) = HACklr)
40T 5 5 _, Point-source test case: u(r) = Hy(k|r
‘|‘(Zk) 2V’¢ . VAQ -+ AQV ?,D + V Al] 10 * B ]
- 107° | T :
—|—(Zk)_1 _2V¢ . VAg -+ A3v2¢ + VQAQ] + .= 0 § 107% | 1O A M - Orderl(Lowest) ]
é 10_: | |
— 5
(V¢)2 — 8(1‘) Eikonal Equation (Rays) % 1070 | dr2
2V¢ : VAl + A1V2¢ =0 Energy Transport Equation < 107" i
1071
2 2 . . _,; log—log
2V¢ -VAs + AV w + V*A; =0 Higher-order Transport 07 o . - . -

Wavelengths from source

Acufia and Bruno, “Efficient high-order WKB implementation”, in progress



300

N
S

Altitude, km
S

Difficulties at Caustics

Distance , km

I T I I T
500
Distance, km

Kravtsov and Orlov, “Caustics, Catastrophes and Wave Fields,” [1993]

Cross-section of a ray tube vanishes — infinite intensity predicted. Unphysical!

Ray field continues to span a region beyond a caustic, and so does the amplitude, which is given in terms of the Jacobian J of the ray mapping.
After a caustic the field requires a correction: beyond a caustic the amplitude must be corrected by the factor (—i)™.

The approximation still breaks down at caustics, and is inaccurate near caustics.

The KMAH index m—after Keller, Maslov, Arnol’d and Hormander—encodes the number and type of caustics the ray has traversed. Caustic type
needs to be determined. Generally not used in practice.

Extensive literature. Focus on classification. Unclear how implementation of these ideas could be accomplished to simulate realistic configurations.



Difficulties at Caustics: catastrophes

A "catastrophe” is a qualitative and jumpwise variation of the state of the system.

In geometrical optics, catastrophes occur as a change in the number of rays coming into a given point of space.

200 e — S—
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Proposed approach: Screened WKB (S-WKB).

Produce accurate field values, including at and around caustics, by avoiding WKB caustics.

| /@)=u|?

——__ Exactsolution
I av /

—_—
/ero rays /\\

Catastrophe

I

Two rays

Kravtsov and Orlov, "Caustics, Catastrophes and Wave Fields,” [1993]




The Screened-WKB Method
:é A A

Each Fourier mode
corresponds to an angle

2

Curved screens ok!
(not used here)

z < "
é — Obtain FFT along screen — Compute (z-dependent) inciqlence — Propagate each mode separately
M/2 angles, one for each mode e'™# via WKB
um‘:’m:mu = Z ame’™ (using Eikonal equation at x = x) — Use local intensity for each ray
m=—M/2+1 M/2 — Sum the series at present screen
4 A Z amez’m-z+z’(k:2n2(z)—m2)1/2~(93—x0) (requires interpolation)
m=—M/2+1 (tofirstorderin (x —x,)) — Repeat: Obtain FFT along screen...

The modes do not suffer from caustics... in neighborhoods of fixed width around every screen.
Irrespective of whether the screen is far, close to, or intersecting a physical caustic.

O. Bruno and M. Maas, [2023] (arxiv.org/abs/2301.03814)



Test case: Exact Solution
Separation of variables, assuming n(x,z) = n(z)

Propagation across a "smooth dielectric waveguide"

n(x,z) =n(z)=1 + aeb?” with values such as eg.a=>b = 10"%

N(z
(Refractivity N = (n — 1) x 10° ~ 0(102).) ( )

Exact solution obtained by separation of variables and numerical solution of Sturm-
Liouville eigenvalue problem in z with oscillatory exponential variation in x.

C-band radar (A = 0.05 m)

E.g. 400 m in height (8,0004) and 200 Km in range (4,000,0001).
Typical range of

atmospheric variation



Height (m)

Solution (Real Part)

Screens

40 km, C-band (A = 5 e¢m), 800,000 A

Exact Solution (intensity) Screened-WKB Solution (intensity) - Intens"ity‘an‘d Rays

100

-100

-200
0 10 20 30 40 0 10 20 30 40

Range (Km) Range (Km)

Function N (2) \ Maximum Rel Error: 107>

(Comparison with exact solution) —

Quantitatively typical . . .
atmospheric range | 2 min single-core computation



Screened-WKB

40 km, C-band (A = 5 e¢m), 800,000 A
Maximum Rel Error: 10>

O. Bruno and M. Maas, [2023] (arxiv.org/abs/2301.03814)



Similar features in the
exact and S-WKRB
solutions

Berry, “Waves and Thorn's theorem”
Adv. in Ph. [1965]
Experiment

iy g
o
Y =
-

No attempts were made
to precisely represent
the experimental setup
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Multiple Caustics
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Multiple Caustics

Maximum Rel Error: 2%. 3 min four-core computation.
(Comparison with exact solution)



Bouncing back and forth...




Same setup; C-Band propagation across 200 Km in range

107
1073

a
b

Maximum Rel

4 million wavelengths,

Error: 0.1%
(4 min in single-core)

Essentially constant error

(=1 o (=1 (=1
(=1 o =3
~
I

(w) ybiaH

One screen per kilometer (1 km = 20,000 A)

Range (Km)



Lens: Propagation along refractivity gradient

250 A X 250 A
(closeup shown)
Valid even for relatively slow variations



Parabolic Equation, SOA

(Example selected to “illustrate the full potential of numerical PE
solutions to complex acoustic problems”)

Jensen, “Computational Ocean Acoustics” [2011]

2004 150A X 60 A
S-WKB

250 A X 250 A

=100

O

Depth (m)

100

200 -

300 T

Range (km)



Mentioned earlier: Gaussian beams
AQ(I‘) Ag(r)
)| ), )
— Gaussian beams: additional approximation, by seeking the phase 1 in the form of a quadratic

polynomial, with a Hessian matrix that is evolved along the ray. (Babi¢ and Buldreyev 1960’s, Hérmander [1971], Babi¢ and
Pankratova [1973], Ralston [1976, 1982], Popov [1982], Tanushev, Engquist, Tsai, [2009].)

= Eliminates ray-bunching at caustics. Intensity remains bounded at caustics.
= k — oo convergence has not been established theoretically, and is believed to be slow.
= |nitial beam representation is a challenging optimization problem, as illustrated in the graphs

u(r) = e*v) (Al(r) +

be | OoOWwW.: energyve Number of Beams Boundary data difference in the H' norm
15000
T .
. = 10000 |75+
g A
L 5000
0 5 1‘0 15 U L L L
Number of Beams 0 50 100 150 200
Fig. 7. Energy norm difference between the wave field and the extracted Gaussian beam wave field as a function of the number of extracted beams for the .\‘llIIlel’ OE CEI ll-‘}?‘iiEIIl thlI[lS
double slit experiment.
Real part of the wave field Real part of the wave field
Finite Differences Gaussian Beams Difference
15 — Lon == e G 0
) e EE 0.2 e EEE 0.2 FF IR
1l ZZEE : ZZEEIR : V5 tr B ;
( \‘\ \ s \
0.5 -0.2 -02 |
' -0.4 -0.4 Wbl ~0.02

Numerical illustrations from: Tanushev, Engquist, Tsai, JCP [2009]
Tanushey, Tsai, Fomel and Engquist, SEG Meeting [2011]



Mentioned earlier: Dynamic Surface Extension (DSE)

Wave-front surface is propagated on a Cartesian discretization. Introduced in [SFW]

Algorithm elements ([SFW] version)

. Eulerian-Lagrangian grid-centered algorithm for propagation
of variables at each time step.

. Uniform Cartesian grid.

. Surface point closest to Cartesian grid point associated to
grid point.

. Evolve per the given velocity distribution.

Fronts

[SFW] Steinhoff, Fan, Wang, JCP [2000]

Algorithm elements ([RMO] version)

. Use a uniform Cartesian grid.

. For each x in the grid, initially set an associated tracked point

to equal the closest point on the surface.

. Evolve the tracked point according to the local dynamics.

. Reset each tracked point to equal to the closest point on the

updated surface (defined to be the locus of all tracked points)

. Update normals.

Fronts
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[RMO] Ruuth, Merriman, and Osher, JCP [2000]

DSE does not produce field values or amplitudes
([RMO] evaluates the amplitude as inversely proportional to curve “expansion ratio” (stretching))



Mentioned earlier: Kinetic formulation

View each ray tracing equation as describing the motion of a "particle” (e.g. photon, phonon)
— Density of particles f(t, x, p) propagated along rays. (p = direction of propagation of particle at x.)

— Liouville equation

— Difficulty: the correct initial condition (and solution) is the "Wigner measure": a 8-function that
vanishes for "incorrect" directions p.

— Physical field intensities: use of integral moments.

(Smooth) Point-source test. No caustics. Lens. Error estimates not provided for
configs. w/ caustics.
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[n X (4n) spatial discretization used |



Screened WKB

FUREEE S 4,000,000 wavelengths
(4 min in single-core)

Forthcoming work

Time domain.
Interior domains. e

Sparse screen resolution.
x

Multiple cross-ray screens.
Bottom- and top-surfaces / refractivity discontinuities.
Parallelization, Atmospheric/Oceanic/Seismological/Quantum applications.

0. Bruno and M. Maas, (arxiv.org/abs/2301.03814) 250 wavelengths




Topics

Interpolated Factored Green Function (IFGF): FFT-free acceleration algorithm
OpenMP on 28-core server and MPI on 1680 cores

Metamaterials: large computer cluster, photonics modeling

Time-domain frequency-time hybrid solver

Long-range time-domain propagation over terrain

Long-range propagation: Screened WKB
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