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Classical Optics



Light scattering




The particles undergo Brownian motion. The image can be understood
as a time average over the paths of the particles.

Since the positions of the particles are unknown, it will prove to be
advantageous to regard them as random.

Suppose we have a fast camera and can freeze the motion of the par-
ticles; we can think of this as one realization of a random process.
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Wavefront shaping

Cao, Mosk and Rotter, Nature Physics (2022)
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Scales

Waves

— scale of the wavelength A

Transport

— scale of the scattering length /4

Diffusion

— Mmacroscopic scale L

Multiple scattering and separation of scales

AL /ls K< L



Waves, transport and diffusion

At microscopic scales, the field u(x,t) obeys the wave equation

e(x) 0%u

c2  Ot?

where ¢ is the dielectric permittivity and for simplicity we do not consider
polarization.

= Au ,

At mesoscopic scales, the specific intensity I(x, R, t) obeys the radiative
transport equation

101 | L ah B O & — ACR BT
101 4 k-Vel = g_/dk/ [A(k’,k)I(x, k") — A(k, k) I(x, k)} :
S

c Ot

The phase function A is normalized so that [ A(k,k')dk’ = 1 for all k.



At macroscopic scales, the specific intensity is well approximated by the
solution to the diffusion equation

1
_8_U = DAU ,
c Ot

where I(x,k,t) = U(x,t) + ¢sk - VU(x,t) and D = Lcts.

We view light propagation in disordered systems as the study of waves
in random media. Averaging of randomness at the microscopic level
leads to deterministic behavior at the macroscopic level.



Waves to transport

The RTE can be derived from the high-frequency behavior of wave
propagation in random media. Field correlations (Wigner transform)
are related to the specific intensity.

This is a long story. See R. Carminati and J. Schotland, Principles of
Scattering and Transport of Light (Cambridge University Press, 2021).

The wave equation is invariant under time reversal but the transport
equation is not. This is reminiscent of the problem of deriving Kinetic
equations from Hamiltonian mechanics.

Averaging over the random medium leads to the loss of time-reversal
invariance.



This is a fantastic book for those of us who work on mathematical modeling of wave
interaction with complex systems. [...] It will undoubtedly become an indispensable aid to
researchers in optical physics and optical engineering, and to anyone who wishes to move
into the field.

Habib Ammari, ETH Ziirich

This beautiful masterwork of Carminati and Schotland takes us from the foundational laws
of physics expressed in Maxwell’s equations through to the most quotidian of observable
phenomena: light viewed through a murky liquid. [...] Every step of the way is clearly
explained and accessible. | suspect the reader may arrive looking for a particular chapter
and find the whole book irresistible.

P. Scott Carney, The Institute of Optics, University of Rochester

Light scattering is one of the most well-studied phenomena in nature. It occupies a central
place in optical physics and plays a key role in multiple fields of science and engineering.
This volume presents a comprehensive introduction to the subject. For the first time, the
authors bring together in a self-contained and systematic manner the physical concepts and
mathematical tools that are used in the modern theory of light scattering and transport,
presenting them in a clear, accessible way. The power of these tools is demonstrated by a
framework that links various aspects of the subject: scattering theory to radiative transport,
radiative transport to diffusion, and field correlations to the statistics of speckle patterns.
For graduate students and researchers in optical physics and optical engineering, this book
is an invaluable resource on the interaction of light with complex media and the theory of
light scattering in disordered and complex systems.

Rémi Carminati is Professor of Physics at ESPCI Paris, before which he held a faculty position
at Ecole Centrale Paris. He was awarded the Fabry-de Gramont prize of the French Optical
Society and is a Fellow of the Optical Society of America.

John C. Schotland is Professor of Mathematics at Yale University. He has held faculty
positions at the University of Pennsylvania and the University of Michigan, where he was
the founding director of the Michigan Center for Applied and Interdisciplinary Mathematics.
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SCATTERING AND
TRANSPORT OF LIGHT

Rémi Carminati and John C. Schotland




waves in random media

Coherent backscattering

Speckle correlations

Localization

Near-field effects

Imaging



Quantum Optics



Quantum optics and random media
e Radiative transport is based on classical theories of light propagation

e Are there quantum effects in radiative transport?
— spontaneous emission of single photons

— transport of entangled two-photon states

e New mathematical tools
— many-body problem

— nonlocal PDEs with random coefficients



Physical ideas

o 0‘0:“/
® o o




Quantization of the field

We consider a scalar model of the electromagnetic field (without polar-
ization). The field u obeys the wave equation

02u
ot?
We expand the solution into Fourier modes of the form

w(x,t) = ug(t)e™X
k

— CQAU :

and find that
’Lik —|— w,%uk = 0.

This corresponds to independent harmonic oscillator modes with fre-
quency wj = clk].



The oscillators are quantized by promoting the wu; to operators in the
usual manner. The Hamiltonian of the quantized field is given by

H = Zﬁwkalak .
k

The creation and annihilation operators obey the bosonic commutation
relations

[ak,CLL,] — 5kk’ ) [ak,ak/] =0 .
Here aL and aqi are defined by
al Ing) = Vg + 14+ 1) L arlng) = Vaglng — 1) -

Photons are collective excitations of the quantized field. There are n;
photons in the state |ng), each with energy hw;.



Two-level atom

We consider a two level atom with Hamiltonian
Hy = 2ol :

where Q2 is the transition frequency of the atom. Here o is the lowering
operator and o1 is the raising operator for the atomic states. That is,
o = |0)(1|, where |0) is the ground state and |1) is the excited state.
Note that o obeys the fermionic anticommutation relation {o,o1} = 1.

If the atom is initially in its excited state it will remain there forever; it
IS an eigenstate.



The atom has an electric dipole moment which couples to the field
according to the interaction Hamiltonian

Hy = hgz (aLa -+ akaT) :
k

where the coupling constant g is proportional to the dipole moment.
The first term corresponds to loss of a photon by the atom and the
gain of a photon by the field; the second term has the opposite effect.

The coupling to the field causes the excited state to decay; this is called
spontaneous emisssion.



Many atoms

Consider the following Hamiltonian:

H = Z hwka;r{ak + Z hQa;[aj + hg Z Z (aLajeik'Xj + akaje_ik'xj) ,
k J J k
where o; = |0;)(1;|. The atoms interact through their coupling to the

J
field.

According to the Schrodinger equation,

the single excitation state

B(®) =33 (e®af + B;(t)al) 0)
7 k



evolves according to

ye! —ikex,
zaakzwkak—l—gZBje ikex;
J

.d x.
i—pB; = QB+ gZakeZk %5

The number of excitations is conserved.



Spontaneous emission

Consider a single atom, which is initially in its excited state. If g = 0O
(no coupling to the field), then

B(t) = e W2

and the atom remains in its excited state for all times.

If g # 0, the atom decays to its ground state due to coupling to the

vacuum field. The probability that the atom is in its excited state is
P(t) = B2 =",

where v = ¢2Q?/c3 is the decay rate.

This result is due to Wigner and Weisskopf (1930). It makes use of an
approximation that breaks down at long times.



Many atom dynamics

When there are many atoms, the spontaneous emission of light becomes
cooperative.

d _ikx,

i g = weak + g3 Bre
j

.d kX

i B = QB + 9> ogee™

dt .

The dynamics depends on the size of the system. For small systems,
there is exponential decay at the rate N~, where N is the number of
atoms. For large systems there are oscillations and decay.

This is a computationally challenging problem.



Single-photon superradiance
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Svidzinsky, Chang and Scully, Phys. Rev. Lett. (2008)




Cold trapped 8'Rb

(a) (b) by=142 A= 8T
)
_@ . 6 = 35° < | ]
—— 0.5

Santo, Weiss, Cipris, Kaiser, Guerin, Bachelard and Schachenmayer, Phys. Rev A (2020)



Real-space quantization
The analysis of many-body problems requires new mathematical tools.

In order to treat the atoms and the field on the same footing, we
introduce a real-space quantization of the fields.

The Hamiltonian of the field is given by

H = Z hwka;f{ak ,
k

where wy, = c[k|.

Let ¢(x) denote the Fourier transform of ay,
d(x) = Zeik'xak :
k

Evidently, ¢ obeys the commutation relations [¢(x), dT(x)] = §(x — x')
and [¢(x), ¢p(x')] = 0.



The Hamiltonian becomes
H = he [ dx(~0)'2¢1 ()¢ (x) .

since |k| is the Fourier multiplier of (—=A)1/2,

T he operator (—A)l/2 is non-local and is defined by the Fourier integral
dk

(~A)2100) = [ 5 55e IkIf )
It also has the spatial representation
x — Y]

which is a singular integral.



The Hamiltonian now becomes
H = n [ dx[e(-2)126f )6 (x) + o)t () (x)
+ 9p(x) (6T (X)o(x) + ¢(x)oT(x)) | ,

where o(x) is the atomic lowering operator and p(x) is the number
density of atoms.

Consider a single-excitation state of the form

W) = [ dx [, 061 () + p()alx, e GO] 0)

where |0) is the combined vacuum state of the field and the ground
state of the atoms. Here a(x,t) denotes the probability amplitude for
exciting an atom and ¥ (x,t) is the amplitude for creating a photon.

The quantity |y (x, t)|2 is proportional to the number of photons regis-
tered by a detector.



The dynamics of the state |W) is governed by the Schrodinger equation

ihdy| W) = H|WD) .

We find that a and ¢ obey the nonlocal PDEs

i0) = c(—A) 2% + gp(x)a
10ra = gy + Qa .

The amplitudes obey the normalization condition

[ ax (16 (e, 012 + pOlatx, D) =1,

which guarantees conservation of probability.



Spontaneous emission

Consider a single atom with p(x) = d(x). We assume that the atom
IS initially in its excited state and that there are no photons present
in the field. The probability the atom is in its excited state decays
exponentially:

a(0,t)]2 = e,

where

9292

T 7T03

Here we make use of a pole approximation and recover the result of
Wigner and Weisskopf.



Constant density

Suppose that p(x) = pg. Then

10 = (=) + gpoa
10ra = gy + Qa .

can be solved explicitly.

Suppose that initially there is a localized region of excited atoms. The
initial amplitudes are taken to be

¥(x,0) =0,

1 3/4 2 /572
Vpoa(x,0) = (—) e~ 1XI7/215

w2



_gV2 pols’ e Mt e=iA- (k) —12K2/2
b(x, ) = i / dk k sin(k|x|) OB N |

Nk

Vpga(x,t) = Y53 XI/ dk ksin(k|x]|)
L O (R) - Qe A=)t _ (A_(k) —Q)e—i/\+<k>te_l§k2 P
Ay (k) — A_(k) ’

where

clk| + 2 £ 1/ (c|k| — 2)2 + 49200

A(k) = 5
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Many atoms

Let p(x) = Zé'v:1 §(x —x;). Then as t — oo,

a(t) =Y R;eita(0) + Y Sje%"a(0)
j j

2 i
gce 1
“or2ic23 0 T O (t_4) ’

where p; and z; are poles of two matrix-valued functions, and R; and
Sj are corresponding projectors.

Note that there is a crossover from exponential to algebraic decay at
long times.



Random media

In a random medium, we wish to determine (Ja(x,t)|2) and (J9(x,t)|?),
where (---) denotes statistical averaging.

i0) = c(—A) 2% + gp(x)a
10ra = g + Qa .

The atomic density p(x) is taken to be a random field of the form
p(x) = po(1 + n(x)), where pg is constant. The density fluctuation n is
a statistically homogeneous and isotropic random field with correlations

(n(x)) =0,
(n(xIn(y)) =C(x -yl .



The solutions a and 1 oscillate rapidly on the scale of the wavelength.
We are interested in the high-frequency regime where the propagation
distance is long compared to the wavelength, the propagation time is
large compared to the period, and p is slowly varying.

The high-frequency, weak disorder regime is precisely the setting in
which radiative transport theory holds for classical wave fields.

The analog of the RTE can be derived from the asymptotics of the
Wigner transform.



The Wigner transform is defined by
Wi (x,k,t) = d—X/eik'XICD-(X—X’/Q HPH(x+x'/2,t)
1) ) X - (27_‘_)n 1 9 7 9 9

where ®(x,t) = (Y(x,t),a(x,t)).

The probability densities |¢(x,t)|2 and |a(x,t)|? are related to the Wigner
transform by

e, O = [ dkWai(xk,t) |
a(x, )2 = [ dkWao(x,k, 1) .

T he diagonal elements of W are real-valued, but not generally nonneg-
ative. However, in the high-frequency limit they become nonnegative.



The average Wigner transform can be decomposed into modes as

(W(x,k, 1)) = ay (x,k, )by (k)Y (k) + a—(x,k, )b_(k)bL (k)

B 1 At (k) —Q]

b (k) = |

£ VOL(K) — )24 g2pp L IVPO
() = 2 Y (elkl = )2 + 49p0

2

In the high-frequency limit, the modes a+ obey a kinetic equation of
the form

1 _
Eataﬂ: (X7 k) t) + f:i:(k)k | vXa:‘:(X7 k7 t)

= 02(k) [ dK' [AKK, K)ax(x K, 1) — A K)ax(x,k,0)]



The coefficients are given in terms of the correlation function of the
disorder:

4m(9°p0)* A+ (k) —

70 = 5000 (o) — 22 + g2poy2 ¥ (Kl = D+ 49%po0lkl?
dk’ . o
< | Comys CURIR = K)
A1y — _ CUKIR =)
0 [dKe(KI(k-K))
. 2
(k) = (A+(k) — ©2)

(k) —2)24g2pg



We suppose that the atoms are initially excited in a volume of linear
dimensions ls and that there are no photons present in the field:

3/4
a(x.0) = (L) o—IxI?/22

w2

Y(x,0) =0 .

The kinetic equations are solved in the diffusion approximation for an
infinite medium. We assume isotropic scattering with A = 1/(4r) and
set Qls/c =1, po(g/)? = 1.

At long times (Q2t > 1)
C 1

(Ja(x,t)]?) = 3/12 + O (W) )
C 1

(6,01 = 5% +0 (575) -
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Two-photon states

The physics of two-photon states is much richer. There can be entan-
glement of both the photons and the atoms.

Consider a two-photon state of the form

¥) = /dXIdXQ Wo(x1,x2, )97 (x1) 0T (x2) + p(x1)¥1(x1, %2, )¢ (x1)0 T (x2)
+ p(x1)p(x2)alx1, X2, )0 (x1)0t (x2)]10) -

Here a denotes the amplitude for exciting two atoms, 5 is the amplitude
for creating two photons, and 1 is the amplitude for jointly exciting an
atom and creating a photon.



The dynamics of the state |¥) is governed by the Schrodinger equation
iho | W) = H|P) .
We find that a, ¥1 and Yo obey
iOp2 = e(=Bxy) 202 + e(= D) P2 + 2 (pGea)n + p(x2) 1)
01 = |e(—Dxx) 2 + Q| 1 — 2gp(x2)a + 2912 |
i0ia = %({51 — 1) +2%a ,

where 11 (x1,%x2) = 1(x2,X1).

For the case of a single atom, we obtain a modified exponential decay
of the population of the excited state, which describes the process of
stimulated emission. Likewise the case of a medium with constant
density can be analyzed.



Two photons constant density
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Two-photon RTE

In a random medium, the average Wigner transform can be expanded
into modes in a manner similar to the one-photon problem. It can
be seen that in the high-frequency limit, the modes a;(x1,kq1,x2,ko),
1 =1,2,3,4, obey kinetic equations of the form

1 o _
;(9750,@- + k1 - Vxya; + ko - Vxsa; = Tia; .

The coefficients and the transport operator 7; are related to density
correlations.

T he diffusion approximation for a; is constructed in the standard way.



We suppose that two photons are present in the field and that the atoms
are initially in their ground states:

Yo (x1,%0,0) =C (€—|X1—YO|2/21§€—|X2—Y1|2/213 + €—|X1—yl|2/2l§€—|xz—yo|2/2l§)

Y1(x1,%2,0) =0,
a(x1,%2,0) =0 .

We note that the initial two-photon state is entangled (not separable).
T he Kinetic equations are solved in the diffusion approximation.

At long times (Q2t > 1)
C 1
<|¢1(X17X27t) 2> — t—31 + O <t_4) y
1
<|¢2(X17X27t) 2> — t—3 _I_ O (t_4) y

C 1
(la(x1,%2,1)|?) = t—33 + O (t_4)
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Related topics

Resonances and bound states

Band structure and homogenization

Anderson localization

Solvers for nonlocal PDEs



Applications

e Imaging
— quantum correlations

— superresolution

e Communications
— quantum information and disorder

— channel capacity



One-way waveguides

Waveguides in which light propagates in one direction can serve as one-
way carriers of quantum information.

T he violation of reciprocity is due to an asymmetric dispersion relation.




Model

Consider the following Hamiltonian for a one-way waveguide containing
a collection of two-level atoms:

H = h/dw [iv@xqu(x)qb(x) + Qp(z) ol (x) o (x)
+ gp(2) (67 (@)o () + d(x)o’(2)) ] .

The single excitation energy eigenstate |W) obeys the Schrodinger equa-
tion H |¥) = hw W), with

¥) = [ dz [6(2)6! (@) + p(@)a(@)ot ()] 10) |

The amplitudes a and v satisfy

i0x1p + vp(x)t) = %w ,

SECRLL WY
g

a

where v = ¢2/(w — Q).



Integration of the above gives

v(@) = exp [—iZe + i [* p()dy| w(0) |

Note that | (z)|? is independent of p(z). Transport is independent of
configuration.



Waveguide arrays

We consider the propagation of a single photon in an array of one-way
waveguides.

The waveguides, each of which contains many two-level atoms, are
arranged in a one-dimesional lattice.

In a chiral array, the atomic frequencies alternate in value between two
interpenetrating sublattices.

In an antichiral array, the group velocities alternate in sign between the
sublattices.



Chiral and antichiral arrays

(o >
Ql >
! ) J
QQ Y—p
Ql >

o
<— — = >

D0 0 <




The Hamiltonian of the system is H = H4+ Hr + H;. Here the atomic
Hamiltonian H 4 is given by

Hy = hwo/dman(x)aT(x)a(m) :

The Hamiltonian of the optical field Hg is
Hp = h/ d:cZ[qb;rl(a:) (2 + ivn0z) dn(x)
+ Jo(¢h,(2)bpp1(x) + 6) 1 (@)n(2))] -

The interaction between the atoms and the field is of the form

Hy =g [ doy pu(@) [0} @)n(@) + o(2)6}(2)] -



We suppose that the system is in a single-excitation state of the form

9) = [z [en(@)ot (@) + du(@)6} ()] [0} .

Making use of the Schrodinger equation H |¥) = Eg|W¥) we find that

1UnO0z¥n + 2nibn + Jo (wn—l—l + %,—1) + ’an(x)lbn = Eo¥Yn ,

We split the above into even and odd parts and take the continuum
limit. Let ¥1 and > denote the values of ¢ in each of the sublattices.

We then have

10291 + Q1 +1JOyo + V(z,y)Y1 = By,
1000 — Qo + 1JOyp1 + V(x,y)po = Evpo .

where 2 = (Ql — QQ)/Q and £ = FEg + (Ql —I-QQ)/Q.



Dirac equations

For a chiral array, the frequencies differ in each sublattice and the group
velocities are the same with v{ = vo» = v. We then find that ¥ = (1, ¢5)
obeys the Dirac equation

WOz +iJadyy + QBY + V(z,y) = EY

where o and g are the Pauli matrices

(2 oo 2

This is a (141) dimensional Dirac equation, where the coordinate x
is timelike, y is spacelike and €2 plays the role of the mass. Here the
nondimensionalized Dirac operator D = iady + 8 with D? = —02 + 1.



For an antichiral array, the group velocities alternate in sign with vy =
—vo = v and €2 = 0. It follows that ) obeys

0B + iTady + V(z,y) = B .

This is a (240) dimensional Dirac equation, where both the z and y
coordinates are spacelike. Here the nondimensionalized Dirac operator

D = iB0y + iady with D? = —A.



Chiral and antichiral arrays

Plots of the total probability density [¢1|? + |¢o]2.



Inverse problems

Consider a time-harmonic solution of

i0p = c(— )2 + gp(x)a
10ra = gy + Qa .

This leads to the boundary value problem
(—A)Y2u 4+ p(x)u=0 in €,
u=f in Q°,
where the potential n(x) = g2/(w — Q)p(x).

We define A, (f) = (—A)l/Qu‘QC. The inverse problem is to recover n
from Ay. Due to nonlocality, the problem is formally determined with a
single source. By unique continuation (Ghosh, Ruland and Uhlmann),
there is an inversion formula




with measurements taken on an open subset of Q2¢. The unique contin-
uation is not stable.

Instead, consider the scattering problem (in dimension three)
()29 + n(x)p = ke
0
lim |x]| ( WYg — le) =0.

x| =00 0|x|

Here the scattered field ¥s = ¢ — 1;, where the incident field ; obeys
(A2 — kypy = 0.

In the far zone, the scattered field is of the form
ik|x|
¢s ~ qb(k? k/) ’

x|

where the scattering amplitude ¢ depends on the incoming and outgoing
wavevectors k and k’.

e

The inverse problem is to recover n from measurements of ¢.



Scattering theory

The field obeys the Lippmann-Schwinger equation

() = %) + [ GBIy

By iterating the above we obtain the Born series
() = () + [ GO YINW)Yi(y)dy
+ [ GG,y I iy Yydy + -

The outgoing Green’s function is given by

- 1 i (x—y) d
oY) =3 ) ke
Note the identity
1 0
G(x,0) = g(x) ,

- 2n[x|O|x|



where
g(x) = —eZk|X|E1(zk|X|) + qetklxl

The exponential integral is defined by

OOet

F1(x) :/ —dt
T 4
and
o0 )"
By(e) =~y —logz — 3, 2
n—=1 n n:

Thus the near field decays as 1/|x|? and the far field decays as 1/|x]|.

In the far field

6ik|X| Lo 1
G(x,y) =k e XY 1140
27 |x| |X|
We then see that the scattered field is given by

ctk|x|

5 e~ FXYn(y)v(y)dy .
x|

¢8Nk




By removing the geometrical factor, the scattering amplitude is of the
form

o= [ eI ny)e(y)dy .

Taking the incident field v;(x) = e’X"X and using the Born series for Y,
we find that

¢ = Ki1(n) + Ko(n,n) + K3z(n,m,m) +--- ,

_. . JE— /.
Kl (6 K) = [em* K9Gy, y2) - Glyno1,90)

XN1(y1) .- -mm(yn)dy1...dyn ,
and k = kx and k' = kX/.

We can estimate the norm of K,, by
| Km| <vp™ 1t

for suitable constants x and v. Here Ky, : L?(Bq X -+- X Bg) — L2(S?),
where n is supported in the ball By.



Inverse Born series

Let X and Y be Banach spaces and K,, : X™ — Y be a multilinear
operator. Here X™ indicates the m-fold tensor product XM = X® ---X
equipped with the projective norm. Consider the operator F : X — Y
defined by

Flnl= > Km(n,...,n).
m=1

The forward problem is to evaluate the map F :n— ¢ for n € X and
¢ €Y. We refer to the above as the Born series.

The inverse problem is to determine n assuming ¢ is known. That is,
we wish to construct a map Z : Y — X which is, in a suitable sense, the
inverse of 7. We define the operator Z by

Tlo] = Z Km (o).

m=1

This is the inverse Born series.



To find the operators Ky, 1 Y™ — X, substitute the series for n into the
series for ¢ and equate terms of the same order in ¢. We find that Iy,
IS homogeneous of degree m and is given by

1K1 =1,
Ko(¢) = —K1 (K2(K1(¢),K1(9))) ,
Kn(@=-Y Y  KiKn(Kiy(8),...,Ki,(8)).

n=21i1+ F+in=m

We note that inversion of K7 is simple since

Ka(m (k) = [ e 0Kn(y)dy

with |k| = |k/| = k yields a band-limited Fourier transform. Thus the
highest frequency present in the reconstruction is 2k.



T he following theorem establishes a sufficient condition for convergence
of the inverse Born series. Let Br x denote the ball of radius R centered
at the origin in the Banach space X

Theorem (Hoskins and S). Let 1 and v be positive constants. Suppose
that || K| < vp™ ! for m =1,2,--- . The inverse Born series converges
if ||KC1¢]|x <7 , where the radius of convergence r is given by

rzi[\/1602+1—4(]],
2p

where C' = max{2,||K1|lv}. Moreover, if K1¢ € B-(X) then the inverse
operator Z maps Br(X) into By, (Y), with rq = 24/1/16C2 + 1.




We characterize the approximation error as follows.

Theorem (Hoskins and S). Suppose that the previous hypotheses hold
and that the Born and inverse Born series converge. Let n denote
the sum of the inverse Born series and n; = Ki¢. Setting M
max {||nl|lx, |7]|x}, we further assume that

1 V[ Kyl
M —11-— :
7 ( J 14 v||K4]

Then the approximation error can be estimated as follows:

1
n

< s (lmdlx
— T 1_Imlix

X r

)N—I—l

N
n— Z Km (o)
m=1

1
(1= G + vkl 1A - KaK Dl

where M = 24

V160241




Numerical reconstructions

Simulations were performed in 2D with &£ = 27, 100 sources and 100
detectors, and in 3D with 1000 sources and 1000 detectors.



Two dimensions
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T hree dimensions
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