Algebra Preliminary Exam

Spring 2022

Instructions: Do all 9 problems. Each problem is worth 20 points. Only the final 6 problems will count toward your grade for the final exam for Math 7320.

Group/Ring Theory

1. This problem has two parts.

- (a) (10 points) State the Fundamental Theorem of Finitely Generated Abelian Groups, and compute, with justification, the number of abelian groups of order 72 (up to isomorphism).
- (b) (10 points) Prove that every nonzero prime ideal in a PID is maximal.

2. Let *R* and *S* be commutative rings, $f : R \to S$ a ring homomorphism, and $P \subseteq R$ a prime ideal. Let f(P) denote the image of *P* under *f*.

- (a) (8 points) Prove that, if f is surjective and $\ker(f) \subseteq P$, then f(P) is prime.
- (b) (6 points) Show that (a) is false when the assumption that f is surjective is removed.
- (c) (6 points) Show that (a) is false when the assumption that $\ker(f) \subseteq P$ is removed.

3. This problem has two parts.

- (a) (10 points) Prove that there is a ring isomorphism $\mathbb{C}[x]/(x^2+1) \cong \mathbb{C}[x]/(x^2-1)$.
- (b) (10 points) Prove that (a) is false if \mathbb{C} is replaced with \mathbb{R} .

Linear Algebra and Modules

4. (20 points) Compute the Jordan canonical form of the matrix

$$A = \begin{pmatrix} -1 & 0 & 0 & 0\\ 0 & -1 & 0 & 0\\ -2 & -2 & 0 & 1\\ -2 & 0 & -1 & -2 \end{pmatrix}.$$

over \mathbb{C} . You may use, without justification, that the characteristic polynomial of A is $(x+1)^4$.

5. (20 points) Recall that a commutative ring R is called *local* if it contains exactly one maximal ideal. Let M and N be finitely generated modules over a local ring R. Prove that $M \otimes_R N = 0$ if and only if M = 0 or N = 0.

6. Let A be a square matrix over a field F, and let A^T denote its transpose. Prove that A is similar to A^T via the following steps.

- (a) (10 points) Prove that A is similar to A^T when A is a Jordan block.
- (b) (6 points) Prove that A is similar to A^T when the characteristic polynomial of A splits completely over F.
- (c) (4 points) Prove that A is similar to A^T in general.

Fields and Galois Theory

7. (20 points) Let K/F be a field extension, and let $\alpha \in K$ be algebraic over F. Recall that the *minimal polynomial of* α is defined to be the monic polynomial $f \in F[x]$ of smallest degree such that $f(\alpha) = 0$. Prove that the minimal polynomial f of α is irreducible.

8. Let $f = x^4 - 7 \in \mathbb{Q}[x]$.

- (a) (5 points) Prove that f is irreducible.
- (b) (15 points) Let K denote the splitting field of f over \mathbb{Q} . Compute $[K : \mathbb{Q}]$.

9. (20 points) Let $K = \mathbb{Q}(\sqrt{2}, \sqrt{3})$. Write down all intermediate fields of the extension K/\mathbb{Q} , being sure to fully justify your answer.