Algebra Preliminary Exam 2024

Name:_____

Group Theory	1	2	3	4	5	Total
Linear Groups	6	7	8	9	10	
& Representations						
Rings & Modules	11	12	13	14	15	

Instruction:

- Answer each question starting on a new piece of paper, and clearly label each page with which question you're solving.
- Write clearly and legibly.
- Be sure to fully explain all your answers, and give a structured, understandable argument.
- You may quote major results from the textbooks, class notes, and homework, unless you are requested to prove the result by yourself.
- 4 out of 5 questions will be graded for each of the three portions. Please cross out the labels of questions you want to drop in the test.

Group Theory

- 1. (a) (6 points) Write the permutation as a product of disjoint cycles: $(1 \ 3 \ 5)(2 \ 4 \ 1)(3 \ 5 \ 2)(4 \ 5 \ 1)$. (1 3)(2 5)
 - (b) (6 points) Let $n \ge 5$. Explain why $(1 \ 3 \ 5)(2 \ 4)$ is conjugate to $(1 \ 2 \ 3)(4 \ 5)$ in S_n .
 - (c) (8 points) Prove the theorem: two elements of S_n are conjugate if and only if they have the same cycle lengths when expressed as disjoint cycles.
- 2. In the group $\operatorname{GL}_n(\mathbb{C})$, consider the following subgroups:

$$G = \left\{ \begin{bmatrix} A & B \\ 0 & C \end{bmatrix} : A \in \operatorname{GL}_r(\mathbb{C}), B \in M_{r,n-r}(\mathbb{C}), C \in \operatorname{GL}_{n-r}(\mathbb{C}) \right\},$$

$$D = \left\{ \begin{bmatrix} A & 0 \\ 0 & C \end{bmatrix} : A \in \operatorname{GL}_r(\mathbb{C}), C \in \operatorname{GL}_{n-r}(\mathbb{C}) \right\},$$

$$T = \left\{ \begin{bmatrix} I_r & B \\ 0 & I_{n-r} \end{bmatrix} : B \in M_{r,n-r}(\mathbb{C}) \right\}.$$

- (a) (10 points) Prove that G is a semi-direct product of D and T, that is, $G = D \ltimes T = T \rtimes D$ where T is a normal subgroup of G (denoted by $T \leq G$).
- (b) (10 points) State and prove a sufficient and necessary condition when two elements $\begin{bmatrix} I_r & X \\ 0 & I_{n-r} \end{bmatrix}$ and $\begin{bmatrix} I_r & Y \\ 0 & I_{n-r} \end{bmatrix}$ are conjugate in G.
- 3. For a subset $A \subseteq \{1, 2, ..., n\}$ with |A| = k, the action of $\sigma \in S_n$ on A is defined by $\sigma(A) = \{\sigma(a) \mid a \in A\}$. The stabilizer $\operatorname{Stab}_{S_n}(A)$ consists of all permutations in S_n that permute the elements of A among themselves. Let G be a subgroup of S_n .
 - (a) (7 points) Show that $\operatorname{Stab}_{S_n}(A)$ is isomorphic to the direct product $S_k \times S_{n-k}$.
 - (b) (6 points) Prove that $\operatorname{Stab}_G(A) = G \cap \operatorname{Stab}_{S_n}(A)$.
 - (c) (7 points) If G acts transitively on the set of all k-subsets of $\{1, 2, ..., n\}$, prove that the only subgroup of S_n containing both G and $\operatorname{Stab}_{S_n}(A)$ is S_n itself.
- 4. (a) (6 points) State three Sylow theorems for finite groups. No proof is required.
 - (b) (7 points) Prove that a group of order p^2 , where p is a prime, is abelian.
 - (c) (7 points) Determine all groups of order 175 up to isomorphisms.
- 5. Let (λ, v) be an eigenpair of $A \in M_n(\mathbb{C})$.
 - (a) (10 points) If v is the first column of $P \in \operatorname{GL}_n(\mathbb{C})$, prove that $P^{-1}AP = \begin{bmatrix} \lambda & x \\ 0 & A' \end{bmatrix}$ for certain $x \in M_{1,n-1}(\mathbb{C})$ and $A' \in M_{n-1}(\mathbb{C})$.
 - (b) (10 points) Prove the Schur Form: for every $A \in M_n(\mathbb{C})$, there exists a unitary matrix $U \in U_n$ and an upper triangular matrix $B \in M_n(\mathbb{C})$ such that

$$A = UBU^* \tag{1}$$

Linear Groups & Representations

- 6. Consider the linear groups U_n and SU_n .
 - (a) (15 points) Prove that
 - U_n is connected and compact;
 - SU_n is a connected normal subgroup of U_n ;
 - $\operatorname{SU}_n \trianglelefteq \operatorname{U}_n$ and $\operatorname{U}_n / \operatorname{SU}_n \simeq \mathbb{C}^{\times}$.
 - (b) (5 points) Let $g \in U_n$. If $h \in GL_n(\mathbb{C})$ satisfies that $h^k = g$ for a positive integer k, prove that $h \in U_n$.

7. (20 points) Explain how you obtain the Lie algebra Lie(G) of a linear Lie group G. Then prove the following:

 $Lie(SL_n(\mathbb{R})) = \{ real \ n \times n \ trace-zero \ matrices \},$ $Lie(U_n) = \{ complex \ n \times n \ skew-Hermitian \ matrices \}.$

8. Let $T \in \mathrm{GL}_n(\mathbb{C})$. Define the form $\langle , \rangle : \mathbb{C}^n \times \mathbb{C}^n \to \mathbb{C}$ by

$$\langle v, w \rangle = v^* T w, \text{ for } v, w \in \mathbb{C}^n.$$

(a) (10 points) Prove that the following set of linear operators preserving \langle,\rangle form a linear group:

$$G = \{g \in \operatorname{GL}_n(\mathbb{C}) : \langle gv, gw \rangle = \langle v, w \rangle \} = \{g \in \operatorname{GL}_n(\mathbb{C}) : g^*Tg = T\}.$$

(b) (10 points) Prove that the Lie algebra of G is the following set:

$$Lie(G) = \{ X \in M_n(\mathbb{C}) : \langle Av, w \rangle + \langle v, Aw \rangle = 0 \} = \{ X \in M_n(\mathbb{C}) : A^*T + TA = 0 \}.$$

- 9. (a) (10 points) State the results of irreducible characters of a finite group in terms of number of irreducible characters, orthogonality, and dimensions.
 - 1. The irreducible characters of G form an orthonormal basis on the space of class functions.
 - 2. The number r of isomorphism classes of irreducible representations of G equals the number of conjugacy classes of G.
 - 3. Let $d_i = \dim \chi_i = \dim \rho_i$. Then each $d_i \mid |G|$ and $|G| = d_1^2 + \dots + d_r^2$.
 - (b) (10 points) Find the missing rows in the character table below:

	(1)	(3)	(6)	(6)	(8)
χ_1	1	1	1	1	1
χ_2	1	1	-1	-1	1
χ_3	3	-1	1	-1	0
χ_4	$\begin{array}{c}1\\1\\3\\3\end{array}$	-1	-1	1	0

10. (a) (10 points) Find the character table of the dihedral group

 $\chi_5 \mid 2 \quad 2 \quad 0 \quad 0 \quad -1$

$$D_4 = \langle x, y \mid x^4 = y^2 = e, xyxy = e \rangle.$$

(b) (10 points) View D_4 as the symmetry group of a square centered at the origin of \mathbb{R}^2 and with vertices e_1, e_2, e_3 , and e_4 in order. Let $\rho : D_4 \to \operatorname{GL}_2(\mathbb{C})$ be the representation of D_4 such that $\rho_g(e_i) = e_{g(i)}$ for $g \in D_4$ and i = 1, 2, 3, 4. Prove that ρ is an irreducible representation.

	(1)	(2)	(2)	(2)	(1)
D_4	e	(1234)	(13)	(12)(34)	(13)(24)
χ_1	1	1	1	1	1
χ_2	1	-1	-1	1	1
χ_3	1	-1	1	-1	1
χ_4	1	1	-1	-1	1
χ_5	2	0	0	0	-2

Rings & Modules

- Exam
- 11. (a) (10 points) Determine the kernel and image of the ring homomorphism $\phi : \mathbb{R}[x] \to \mathbb{C}$ defined by $f(x) \mapsto f(1 \mathbf{i})$. Show that $\operatorname{Im} \phi$ is a 2-dimensional real vector space.
 - (b) (10 points) Determine the automorphisms ψ of the polynomial ring $\mathbb{C}[x]$ in which $\psi(z) = \overline{z}$ for $z \in \mathbb{C}$.
- 12. (a) (10 points) Describe the prime ideals and the maximal ideals in a principal ideal domain.
 - (b) (10 points) What are the maximal ideals in the quotient ring $\mathbb{R}[x]/(x^4-1)$?
- 13. (a) (10 points) Prove that the variety of zeros of a set $\{f_1, \ldots, f_r\}$ of polynomials depends only on the ideal that they generate.
 - (b) (10 points) Which ideals in the polynomial ring $\mathbb{C}[x, y]$ contain $x^2 + y^2 29$ and xy 10?
- 14. (20 points) Define $\varphi : \mathbb{C}[x, y] \to \mathbb{C}[x] \times \mathbb{C}[y] \times \mathbb{C}[t]$ by $f(x, y) \mapsto (f(x, 0), f(0, y), f(t, t))$. Determine the image of this map, and find generators for the kernel.
- 15. Let R be a commutative ring with identity.
 - (a) (10 points) Under what circumstances is an ideal I a free R-module?
 - (b) (10 points) Let M be an R-module, and N an R-submodule of M. Prove or disprove: if both N and M/N are free R-modules, then M is a free R-module.