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Instructions:

1. Two textbooks, [CL] and [HSD] (see below), are permitted during the examination.
Additionally, lecture notes and homework materials are allowed. However, the use
of any electronic devices is strictly prohibited.

2. Please work out the problems in the space provided and show your answers clearly
and legibly. You will be provided draft papers, which won’t be graded.

3. Coverage: The following chapters will be tested in this exam:

CL: Chapt. 1 Existence and uniqueness of solutions
CL: Chapt. 2 Existence and uniqueness of solutions (continued)
CL: Chapt. 3 Linear differential equations (LDEs)
CL: Chapt. 4 Linear D.E.’s with isolated singularities: singularities of first kind
CL: Chapt. 5 Linar D.E.’s with isolated singularities: singularities of second kind
CL: Chapt. 13 Asymptotic behavior of nonlinear system: stability
CL: Chapt. 14 Perturbation of systems having a periodic sol. (first two sections)
CL: Chapt. 15 Perturbation theory of 2-d real autonomous systems
HSD: Chapt. 8 Equilibria in nonlinear systems
HSD: Chapt. 9 Global nonlinear techniques
HSD: Chapt. 10 Closed orbits and limit sets

Textbooks:

CL “Theory of ordinary differential equations”, by Coddington, Earl A. and Levinson,
Norman. McGraw-Hill Book Company, Inc., New York-Toronto-London, 1955.

HSD “Differential equations, dynamical systems, and an introduction to chaos”, by Hirsch,
Moris W., Smale, Stephen, and Devaney, Robert L., Elsevier/Academic Press, Ams-
terdam, (Second Edition) 2004.
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Mark: (out of 100)

Question 1 (40 points) Consider the following second-order equation:

x2
`

´

1 ´
a

z2

¯

x “ 0, z P C.

1. Write the equation in the form of a first-order system. Find out all singularities
on the extended complex plain and classify them as either a regular singular
point or an irregular singular point.

2. Find the formal solution of the system in the sense of Theorem 2.1 on p. 142 of
Coddington’s book. Denote this solution by pΦpzq “

´

pφ1pzq, pφ2pzq

¯

.

3. For each pφipzq, i “ 1, 2, find the right sector Si and solve the equation in Si by
finding actual solution φipzq such that

φipzq „ pφipzq as z Ñ 8.

This problem is presented as the example problem in §1 of Chapter 5 in Cod-
dington’s book. To solve this problem, it is necessary to have a thorough under-
standing of the entire chapter, as well as the preceding chapters.

Solution. Part 1: The given equation is

x2
`

´

1 ´
a

z2

¯

x “ 0, z P C. (1)

Let x1 “ x, x2 “ x1. Then x1
1 “ x2 and x1

2 “ ´
`

1 ´ a
z2

˘

x1. Thus, the system is

d

dz

ˆ

x1

x2

˙

“

ˆ

0 1
´

`

1 ´ a
z2

˘

0

˙ ˆ

x1

x2

˙

.

The singularities for this system include z “ 0 and 8.

• At z “ 0: The coefficient ´ a
z2

has a pole of order 2, so z “ 0 is a irregular singular
point.

• At z “ 8: As z Ñ 8, the coefficient approaches ´1, which is not a zero. Hence, by
Theorem 6.1 of Chapter 4 on p. 128, z “ 8 is an irregular singular point.

Part 2: Find the formal solution at infinity. The system (1) can be rewritten as

x1
“

`

A0 ` z´2A2

˘

x,

where

A0 “

ˆ

0 1
´1 0

˙

and A2 “

ˆ

0 0
a 0

˙

.

It is clear that A0 has two distinct eigenvalues λ1 “ i and λ2 “ ´i. Then according to
Theorem 2.1 of Chapter 5 on p. 142 with r “ 0, we see that the formal solution matrix
takes the form

pΦpzq “ PzReQ,
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where P is a formal power series in z´1,

P “

8
ÿ

k“0

z´kPk, detP0 ‰ 0,

R is a diagonal matrix with complex constants, and Q is given by

Qpzq “ zQ0 with Q0 “

ˆ

i 0
0 ´i

˙

, i.e, Qpzq “

ˆ

iz 0
0 ´iz

˙

.

Now we will determine the matrix P and the diagonal matrix R.

Step a: Diagonalizing A0 and constructing P0. Let S be the matrix of eigenvectors:

S “

ˆ

1 1
i ´i

˙

, S´1
“

1

2

ˆ

1 ´i
1 i

˙

.

Then

S´1A0S “

ˆ

i 0
0 ´i

˙

.

Denote pA0 :“

ˆ

i 0
0 ´i

˙

. Then, (1) becomes

x1
“

´

S pA0S
´1

` z´2A2

¯

x.

By set y “ S´1x, in the y-coordinates, the system becomes

y1
“

´

pA0 ` z´2B
¯

y, (2)

where

pA0 “

ˆ

i 0
0 ´i

˙

, B “ S´1A2S “
a

2

ˆ

´i ´i
i i

˙

.

Step b: Computing R. From Eq. (2.17) on p. 146, we see that R “ diagpAr`1q. Since
r “ 0, and A1 ” 0. We see that R “ 0. Hence, the factor zR is an identity matrix.

Step c: Formal solution in the diagonalized system. By previous two steps, it
reduces to find a formal solution of the form for (2)

ypzq “

˜

I `

8
ÿ

k“1

z´kYk

¸

ez
pA0 .

Let Y0 “ I. The recursion for Yk is determined by substituting into the equation:

y1
“

˜

I `

8
ÿ

k“1

z´kYk

¸1

ez
pA0 `

˜

I `

8
ÿ

k“1

z´kYk

¸

pA0e
z pA0

“

˜

´

8
ÿ

k“1

kz´k´1Yk `

˜

I `

8
ÿ

k“1

z´kYk

¸

pA0

¸

ez
pA0

“

˜

pA0 `

8
ÿ

k“1

z´kYk
pA0 ´

8
ÿ

k“2

pk ´ 1qz´kYk´1

¸

ez
pA0

“

˜

pA0 ` z´1Y1
pA0 `

8
ÿ

k“2

z´k
´

Yk
pA0 ´ pk ´ 1qYk´1

¯

¸

ez
pA0 .
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On the other hand, from (2), we have

´

pA0 ` z´2B
¯

ypzq “

´

pA0 ` z´2B
¯

˜

I `

8
ÿ

k“1

z´kYk

¸

ez
pA0

“

˜

pA0

˜

I `

8
ÿ

k“1

z´kYk

¸

` z´2B

˜

I `

8
ÿ

k“1

z´kYk

¸¸

ez
pA0

“

˜

pA0 `

8
ÿ

k“1

z´k
pA0Yk ` z´2B `

8
ÿ

k“3

z´kBYk´2

¸

ez
pA0

“

˜

pA0 ` z´1
pA0Y1 ` z´2

´

pA0Y2 ` B
¯

`

8
ÿ

k“3

z´k
p pA0Yk ` BYk´2q

¸

ez
pA0 .

Now equate both sides and collect powers of z´k to see that

1. When k “ 0,

pA0 “ pA0.

2. When k “ 1,

Y1
pA0 “ pA0Y1, i.e., Y1 “ pA0Y1

pA´1
0 .

Since pA0 is diagonalizable, Y1 has to be a diagonal matrix as well.

3. When k “ 2,

pA0Y2 ` B “ Y2
pA0 ´ Y1.

4. When k ě 3,

pA0Yk ` BYk´2 “ Yk
pA0 ´ pk ´ 1qYk´1.

Using the Lie bracket notation rA,Bs :“ AB ´ BA, we can summarize the recursion as
follows:

rY1, pA0s “ 0,

rY2, pA0s ´ Y1 “ B,

rYk, pA0s ´ pk ´ 1qYk´1 “ BYk´2, k ě 3,

with

pA0 “

ˆ

i 0
0 ´i

˙

and B “
a

2

ˆ

´i ´i
i i

˙

.

Now solve the recursion. Make the explicit compute computation for Yk, with k “ 1, 2,

which will require computation of k “ 3. Let Yk “

ˆ

pk qk
rk sk

˙

for each k.

Step c-1: Compute Y1. We have rY1, pA0s “ 0. Compute:

rY1, pA0s “ Y1
pA0 ´ pA0Y1 “

ˆ

0 2iq1
´2ir1 0

˙

.
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So q1 “ r1 “ 0, and Y1 is diagonal. Let Y1 “

ˆ

p1 0
0 s1

˙

.

Step c-2: Compute Y2. The recursion is rY2, pA0s´Y1 “ B. For Y2 “

ˆ

p2 q2
r2 s2

˙

, compute

rY2, pA0s:

rY2, pA0s “ Y2
pA0 ´ pA0Y2 “

ˆ

0 2iq2
´2ir2 0

˙

.

So
ˆ

0 2iq2
´2ir2 0

˙

´

ˆ

p1 0
0 s1

˙

“
a

2

ˆ

´i ´i
i i

˙

.

Equating entries gives:

p1, 1q : 0 ´ p1 “ ´
a

2
i ùñ p1 “

a

2
i,

p1, 2q : 2iq2 ´ 0 “ ´
a

2
i ùñ q2 “ ´

a

4
,

p2, 1q : ´ 1ir2 ´ 0 “
a

2
i ùñ r2 “ ´

a

4
,

p2, 2q : 0 ´ s1 “
a

2
i ùñ s1 “ ´

a

2
i.

Thus,

Y1 “
a

2

ˆ

i 0
0 ´i

˙

, Y2 “

ˆ

p2 ´a
4

´a
4

s2

˙

,

with p2 and s2 to be determined in the next step.

Step c-3: Compute Y3. The recursion is rY3, pA0s ´ 2Y2 “ BY1. First, compute BY1:

BY1 “
a

2

ˆ

´i ´i
i i

˙ ˆ

a
2
i 0
0 ´a

2
i

˙

“
a2

4

ˆ

1 ´1
´1 1

˙

.

Recall that Y3 “

ˆ

p3 q3
r3 s3

˙

and Y2 “

ˆ

p2 q2
r2 s2

˙

. The commutator is

rY3, pA0s “

ˆ

0 2iq3
´2ir3 0

˙

Hence,
ˆ

0 2iq3
´2ir3 0

˙

´ 2

ˆ

p2 q2
r2 s2

˙

“
a2

4

ˆ

1 ´1
´1 1

˙

.

Equating entries gives:

p1, 1q : 0 ´ 2p2 “
a2

4
ùñ p2 “ ´

a2

8
,

p1, 2q : 2iq3 ´ 2q2 “ ´
a2

4
ùñ q3 “

1

2i

ˆ

´
a2

4
` 2q2

˙

,

p2, 1q : ´ 2ir3 ´ 2r2 “ ´
a2

4
ùñ r3 “ ´

1

2i

ˆ

´
a2

4
` 2r2

˙

,

p2, 2q : 0 ´ 2s2 “
a2

4
ùñ s2 “ ´

a2

8
.
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Recall from previous step q2 “ ´a
4
, r2 “ ´a

4
, substituting into the expressions for q3 and

r3 gives:

q3 “
1

2i

ˆ

´
a2

4
` 2 ¨

´

´
a

4

¯

˙

“
1

2i

ˆ

´
a2

4
´

a

2

˙

“ ´
1

2i

ˆ

a2

4
`

a

2

˙

“
i

2

ˆ

a2

4
`

a

2

˙

,

r3 “ ´
1

2i

ˆ

´
a2

4
` 2 ¨

´

´
a

4

¯

˙

“ ´
1

2i

ˆ

´
a2

4
´

a

2

˙

“
1

2i

ˆ

a2

4
`

a

2

˙

“ ´
i

2

ˆ

a2

4
`

a

2

˙

.

Thus,

Y2 “

ˆ

´a2

8
´a

4

´a
4

´a2

8

˙

and Y3 “

¨

˝

p3
i
2

´

a2

4
` a

2

¯

´ i
2

´

a2

4
` a

2

¯

s3

˛

‚ .

Step c-4: Compute Y4. The recursion is rY4, pA0s ´ 3Y3 “ BY2. First, compute BY2:

BY2 “
a

2

ˆ

´i ´i
i i

˙ ˆ

p2 q2
r2 s2

˙

“
a

2

ˆ

´ip2 ´ ir2 ´iq2 ´ is2
ip2 ` ir2 iq2 ` is2

˙

.

Recall p2 “ s2 “ ´a2

8
, q2 “ r2 “ ´a

4
. So,

´ip2 ´ ir2 “ ´i

ˆ

´
a2

8

˙

´ i
´

´
a

4

¯

“
a2

8
i `

a

4
i,

´iq2 ´ is2 “ ´i
´

´
a

4

¯

´ i

ˆ

´
a2

8

˙

“
a

4
i `

a2

8
i,

ip2 ` ir2 “ i

ˆ

´
a2

8

˙

` i
´

´
a

4

¯

“ ´
a2

8
i ´

a

4
i,

iq2 ` is2 “ i
´

´
a

4

¯

` i

ˆ

´
a2

8

˙

“ ´
a

4
i ´

a2

8
i.

Therefore,

BY2 “
a

2

ˆ

a2

8
i ` a

4
i a

4
i ` a2

8
i

´a2

8
i ´ a

4
i ´a

4
i ´ a2

8
i

˙

“
a

2
i

ˆ

a2

8
` a

4
a
4

` a2

8

´a2

8
´ a

4
´a

4
´ a2

8

˙

.

Now, as before, the commutator is rY4, pA0s “

ˆ

0 2iq4
´2ir4 0

˙

. So,
ˆ

0 2iq4
´2ir4 0

˙

´ 3

ˆ

p3 q3
r3 s3

˙

“ BY2,

or equivalently,

p1, 1q : 0 ´ 3p3 “
a

2
i

ˆ

a2

8
`

a

4

˙

ùñ p3 “ ´
a

6
i

ˆ

a2

8
`

a

4

˙

,

p1, 2q : 2iq4 ´ 3q3 “
a

2
i

ˆ

a

4
`

a2

8

˙

ùñ q4 “
1

2i

ˆ

a

2
i

ˆ

a

4
`

a2

8

˙

` 3q3

˙

,

p2, 1q : ´ 2ir4 ´ 3r3 “ ´
a

2
i

ˆ

a2

8
`

a

4

˙

ùñ r4 “ ´
1

2i

ˆ

´
a

2
i

ˆ

a2

8
`

a

4

˙

` 3r3

˙

,

p2, 2q : 0 ´ 3s3 “ ´
a

2
i

ˆ

a

4
`

a2

8

˙

ùñ s3 “
a

6
i

ˆ

a

4
`

a2

8

˙

.
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Hence, we obtain the complete expression for Y3:

Y3 “

¨

˝

´a2

8
i
2

´

a2

4
` a

2

¯

´ i
2

´

a2

4
` a

2

¯

´a2

8

˛

‚ .

In summary, we have obtained the following explicit forms for Y1, Y2, and Y3:

Y1 “
a

2

ˆ

i 0
0 ´i

˙

,

Y2 “ ´
a

4

ˆ

a
2

1
1 a

2

˙

,

Y3 “

¨

˝

´a2

8
i
2

´

a2

4
` a

2

¯

´ i
2

´

a2

4
` a

2

¯

´a2

8

˛

‚ .

Step c-5: Find the formal solution. From the above Y1, Y2, and Y3, we can write the
formal solution as

pΦpzq “ S
`

I ` z´1Y1 ` z´2Y2 ` z´3Y3

˘

e
pA0z ` Opz´4

q

“

ˆ

1 1
i ´i

˙

`

I ` z´1Y1 ` z´2Y2 ` z´3Y3

˘

e
pA0z ` Opz´4

q.

After tedious computations, we see that (set a “ ´1{4 and then compare the entries rΦ11pzq

and rΦ12pzq with the last display on p. 146)
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pΦpzq “

¨

˚

˚

˝

eiz
„

1 `
ai

2z
`

ˆ

´
a2

8
´

a

4

˙

1

z2
`

ˆ

´
a2

8
´

i

2

ˆ

a2

4
`

a

2

˙˙

1

z3



e´iz

„

1 ´
ai

2z
`

ˆ

´
a2

8
´

a

4

˙

1

z2
`

ˆ

´
a2

8
`

i

2

ˆ

a2

4
`

a

2

˙˙

1

z3



eiz
„

i `
a

2z
`

ˆ

ia

4
´

ia2

8

˙

1

z2
`

ˆ

´
ia2

8
`

1

2

ˆ

a2

4
`

a

2

˙˙

1

z3



e´iz

„

´i `
a

2z
`

ˆ

ia

4
´

ia2

8

˙

1

z2
`

ˆ

´
ia2

8
´

1

2

ˆ

a2

4
`

a

2

˙˙

1

z3



˛

‹

‹

‚

`O
`

z´4
˘

.
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Part 3: The right sector Sk, k “ 1, 2. According to (5.4) on p. 162, we need to solve

< pi ´ p´iqqzq “ 0.

Hence, the sections Sk, k “ 1, 2, can be

either tz P C : argpzq P p0, πqu or tz P C : argpzq P p´π, 0qu .

According to Theorem 5.1 on p. 163, we see that the asymptotic expansions in Part 2 hold
in the above two cones. Then, one can carry out the analytic continuity arguments as in
p. 166 (left for you to complete) to conclude that

x1pzq „ pΦ11pzq in p´π ` δ ď arg z ď 2π ´ δq

and

x2pzq „ pΦ12pzq in p´2π ` δ ď arg z ď π ´ δq .

This completes the solution of the problem.
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Question 2 (30 points) Consider the damped pendulum system

x1
1 “ x2,

x1
2 “ ´b sinpx1q ´ ax2,

where a and b are positive constants. Show that for any solution φptq “ pφ1ptq, φ2ptqq,
there is an integer k such that

φ1ptq Ñ kπ and φ2ptq Ñ 0 as t Ñ 8.

Distinguish between the nature of the orbits in the vicinity of pkπ, 0q for the cases k
even and k odd. Sketch the orbits in the px1, x2q–plane.

This problem is from the Coddington’s book, p. 402, Problem 3.

Solution. Consider the Lyapunov (energy) function

Lpx1, x2q “ b p1 ´ cospx1qq `
1

2
x2
2 ě 0.

Along solutions of the system

x1
1 “ x2, x1

2 “ ´b sinpx1q ´ ax2,

we have

9L “ b sinpx1q ¨ x1
1 ` x2 ¨ x1

2

“ b sinpx1q ¨ x2 ` x2 p´b sinpx1q ´ ax2q

“ ´a x2
2 ď 0,

with equality if and only if x2 “ 0.

Case I: If x2ptq ” 0, then 9L ” 0. Hence, Lpx1, 0q “ b p1 ´ cospx1qq “ C. Moreover, the
ODE reduces to

x1
1 “ 0, 0 “ x1

2 “ ´b sinx1.

Hence, x1ptq ” kπ for some k P N.

Case II: If x2ptq ı 0, then Lpx1, x2q is nonincreasing and bounded below, so Lpx1, x2q con-
verges as t Ñ 8. Let Λ ě 0 denote its limit, namely, Λ “ limtÑ8 Lptq. As a consequence,
9Lptq Ñ 0 as t Ñ 8, which implies that x2ptq Ñ 0 as t Ñ 8. Therefore, as in case I, in the
limit x1ptq Ñ kπ, as t Ñ 8, for some k P N.
Nature of the equilibria (linearization). The Jacobian at pkπ, 0q is

Jk “

ˆ

0 1
´b cospkπq ´a

˙

“

ˆ

0 1
´bp´1qk ´a

˙

.

• k even: cospkπq “ 1, characteristic equation is λ2 ` aλ ` b “ 0. The two roots are

λ1,2 “
´a ˘

?
a2 ´ 4b

2
.
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If a2 ą 4b, then we have two distinct negative roots. Hence, this equilibrium is an
improper node. If a2 “ 4b, then we have two identical negative roots. Hence, this
equilibrium is a proper node. If a2 ă 4b, then we have a pair of complex conjugate
roots with <λ1,2 “ ´a{2 ă 0. Hence, this gives a spiral node. In both cases, the
equilibrium is asymptotically stable.

• k odd: cospkπq “ ´1, characteristic equation is λ2 ` aλ ´ b “ 0. We have two real
roots of opposite sign:

λ1 :“
´a ´

?
a2 ` 4b

2
ă 0 ă λ2 :“

´a `
?
a2 ` 4b

2
.

Hence, this equilibrium is a saddle point and unstable.

Sketch of the orbits in the px1, x2q–plane:

1. Case a2 ă 4b, spiral nodes at p2kπ, 0q for k P Z:

2. Case a2 “ 4b, proper nodes at p2kπ, 0q for k P Z:
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3. Case a2 ą 4b, improper nodes at p2kπ, 0q for k P Z:
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Remark (Orbits with even k): Fix an even integer k and the equilibrium X˚ “ pkπ, 0q.
Let ξ :“ x1 ´ kπ be the perturbation of x1 away from kπ. Since k is even, cospx1q “

cospkπ ` ξq “ cos ξ, and for |ξ| ď 1, 1 ´ cos ξ ě 1
4
ξ2. Hence, in the set |ξ| ď 1,

Lpx1, x2q “ bp1 ´ cos ξq ` 1
2
x2
2 ě b

4
ξ2 ` 1

2
x2
2,

so L is positive definite at X˚ (strict local minimum). Choose ε ą 0 so small that the
sub-level set

P :“ tpx1, x2q : Lpx1, x2q ď εu

lies inside t|ξ| ď 1u and contains no other equilibrium. Then P is closed, bounded, and
positively invariant since 9L ď 0. On P , 9L “ 0 iff x2 “ 0. If a solution in P has L constant,
then x2 ” 0 and the second equation gives 0 “ x1

2 “ ´b sinx1; hence sinpkπ ` ξq ” 0, i.e.
sin ξ ” 0. Because |ξ| ď 1, this forces ξ ” 0. Thus the only entire solution in P with L
constant is the equilibrium X˚. By LaSalle’s invariance principle (see [HSD]), pkπ, 0q is
asymptotically stable and P lies in its basin. Note that the above arguments fail if k is odd
(please figure why?).
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Question 3 (30 points) In this problem, do not directly cite or rely upon the
standard results of the Laplace integral method. Instead, explicitly derive the asymp-
totic expansions from first principles, carefully following the reasoning and key steps
typical of the Laplace integral approach. Include all intermediate steps and clearly
justify each part of your derivation.

Solve the following second-order equation on the complex plane:

zw2
` pγ ´ zqw1

´ αw “ 0. (3)

Find two linearly independent solutions, denoted as w1pzq and w2pzq. Determine
the asymptotic behaviour of these solutions as z Ñ 8. Additionally, identify the
maximum range of z for which the asymptotic expansion remains valid.

This problem is from the Coddington’s book, p. 172, Section 8. One needs to
fill in significant details to complete the solution.

Solution. The ODE is in the form

pa0z ` b0qw
2

` pa1z ` b1qw
1
` pa2z ` b2qw “ 0,

with

a0 “ 1, b0 “ 0, a1 “ ´1, b1 “ γ, a2 “ 0, b2 “ ´α.

Hence,

P psq “ a0s
2

` a1s ` a2 “ s2 ´ s,

Qpsq “ b0s
2

` b1s ` b2 “ γs ´ α.

Let F be an analytic function and let

ϕpzq “

ż

C

F psqeszds,

where C is a contour in the complex plane to be determined later. Suppose that ϕ is a
solution to (3). Then, we have

ϕ2
pzq “

ż

C

F psqs2eszds,

ϕ1
pzq “

ż

C

F psqseszds,

ϕpzq “

ż

C

F psqeszds.

Substituting these into (3) gives
ż

C

F psq rzP psq ` Qpsqs eszds “

ż

C

F psq
“

zps2 ´ sq ` pγs ´ αq
‰

eszds

“ zϕpzq
2

` pγ ´ zqϕpzq
1
´ αϕpzq “ 0.

14



Integrating by parts yields
ż

C

F psqzP psqeszds “

ż

C

F psqP psq
B

Bs
eszds

“ F psqP psqesz
ˇ

ˇ

ˇ

ˇ

BC

´

ż

C

pF 1
psqP psq ` F psqP 1

psqq eszds.

Hence,
ż

C

F psq rzP psq ` Qpsqs eszds “F psqP psqesz
ˇ

ˇ

ˇ

ˇ

BC

`

ż

C

pF psqQpsq ´ F 1
psqP psq ´ F psqP 1

psqq eszds.

Denote

V pzq :“ F psqP psqesz
ˇ

ˇ

ˇ

ˇ

BC

.

Now, choose F so that

F psqQpsq ´ F 1
psqP psq ´ F psqP 1

psq “ 0.

The above the first order ODE can be solved as follows:

F 1psq

F psq
“

Qpsq ´ P 1psq

P psq
“

γs ´ α ´ 2s ` 1

s2 ´ s
“

γ ´ 2

s ´ 1
`

1 ´ α

s
“

α ´ 1

s
`

γ ´ α ´ 1

s ´ 1
.

Hence, for some constant K,

F psq “ Ksα´1
ps ´ 1q

γ´α´1.

Let us set K “ 1. Therefore, ϕ satisfies (3) if

V pzq “ F psqP psqesz
ˇ

ˇ

ˇ

ˇ

BC

“ sαps ´ 1q
γ´αesz

ˇ

ˇ

ˇ

ˇ

BC

“ 0.

Case I: If <α ą 0 and <pγ ´ αq ą 0, then we can choose the contour C to be the real
interval r0, 1s, which ensures that V pzq “ 0 for any z P C. In this case,

ϕpzq “

ż 1

0

sα´1
ps ´ 1q

γ´α´1eszds, @z P C.

Write
ps ´ 1q

γ´α´1
“ eiπpγ´α´1q

p1 ´ sq
γ´α´1, for s P p0, 1q. (4)

Hence,

ϕpzq “ eiπpγ´α´1q

ż 1

0

sα´1
p1 ´ sq

γ´α´1esz ds, <α ą 0, <pγ ´ αq ą 0. (5)

Case II: If <pγ ´ αq ą 0 and <z ă 0, then we can choose C to be r1,8q. In this case,

ϕpzq “

ż 8

1

sα´1
ps ´ 1q

γ´α´1eszds, arg z P

ˆ

π

2
,
3π

2

˙

.
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By change of variable s “ σ ` 1,

ϕpzq “ ez
ż 8

0

p1 ` σq
α´1σγ´α´1eσzdσ, arg z P

ˆ

π

2
,
3π

2

˙

. (6)

Case III: If α, γ ´α ‰ 1, 2, 3, . . . , then we can choose C to be the Pochhammer contour,
namely, a contour that starts at a P p0, 1q, makes a positive makes a positive loop around
0, a positive one around 1, a negative one around 0, and a negative one around 1, and
returns to a. See Figure 1. In this case,

ϕpzq “

ż p0`,1`,0´,1´q

a

sα´1
ps ´ 1q

γ´α´1eszds

“ eiπpγ´α´1q

ż p0`,1`,0´,1´q

a

sα´1
p1 ´ sq

γ´α´1eszds, @z P C.

where we have applied (4) in the second equality.

Figure 1: The Pochhammer contour C in Case III.

By letting a “ 1´, we can reduce the Pochhammer contour integral as follows:
ż p0`,1`,0´,1´q

a

sα´1
p1 ´ sq

γ´α´1esz ds

“e´2πipγ´αq

ż 0

1

sα´1
p1 ´ sq

γ´α´1esz ds

` e´2πipγ´αqe2πiα
ż 1

0

sα´1
p1 ´ sq

γ´α´1esz ds

` e´2πipγ´αqe2πiαe`2πipγ´αq

ż 0

1

sα´1
p1 ´ sq

γ´α´1esz ds

` e´2πipγ´αqe2πiαe`2πipγ´αqe´2πiα

ż 1

0

sα´1
p1 ´ sq

γ´α´1esz ds

“p1 ´ e´2πipγ´αq
qp1 ´ e´2πiα

q

ż 1

0

sα´1
p1 ´ sq

γ´α´1esz ds.

Therefore,

ϕpzq “
`

1 ´ e´2πipγ´αq
˘ `

1 ´ e´2πiα
˘

eiπpγ´α´1q

ż 1

0

sα´1
p1 ´ sq

γ´α´1esz ds, @z P C.
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Finally, by setting the prefactor

Mpα, γq :“ eiπpγ´α´1q
`

1 ´ e´2πiα
˘ `

1 ´ e´2πipγ´αq
˘

“ 4e´iπα sinpπαq sin pπpγ ´ αqq ,

we can write the solution in a more compact form:

ϕpzq “ Mpα, γq

ż 1

0

sα´1
p1 ´ sq

γ´α´1esz ds, @z P C, (7)

Note that the above prefactor is nonzero under the hypothesis of Case III (no positive-
integer resonance).

Asymptotics of ϕpzq in Case I as <z Ñ `8. When <z ą 0, the exponential esz in (5) is
largest at the endpoint s “ 1. We therefore expand the integrand near s “ 1. By change
of variables,

t “ 1 ´ s, s “ 1 ´ t, ds “ ´ dt,

the integral becomes

ϕpzq “ eiπpγ´α´1q

ż 1

0

p1 ´ tqα´1tγ´α´1ep1´tqz dt

“ eiπpγ´α´1qez
ż 1

0

p1 ´ tqα´1tγ´α´1e´tz dt.

Since e´tz decays exponentially for t Á 1{<z when <z ą 0, we may extend the upper limit
to 8 with an exponentially small error:

ϕpzq « eiπpγ´α´1qez
ż 8

0

p1 ´ tqα´1tγ´α´1e´tz dt.

Near t “ 0, by the Taylor expansion, we see that

p1 ´ tqα´1
“ 1 ´ pα ´ 1qt `

pα ´ 1qpα ´ 2q

2
t2 ´ ¨ ¨ ¨ .

Then we integrate term-by-term, using the definition of the Gamma function
ż 8

0

tβ´1e´tz dt “ Γpβqz´β, <z ą 0, <β ą 0 (8)

to see that

ϕpzq « eiπpγ´α´1qez
“

Γpγ ´ αqzα´γ
´ pα ´ 1qΓpγ ´ α ` 1qzα´γ´1

` ¨ ¨ ¨
‰

« eiπpγ´α´1qezΓpγ ´ αqzα´γ

„

1 `
p1 ´ αqpγ ´ αq

z
` ¨ ¨ ¨



Therefore, we have

ϕpzq „ eiπpγ´α´1qezΓpγ ´ αqzα´γ

„

1 `
p1 ´ αqpγ ´ αq

z
` ¨ ¨ ¨



, <z Ñ `8.
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Asymptotics of ϕpzq in Case I as <z Ñ ´8. Recall, from (5), when <z ă 0, the exponen-
tial esz is largest near the endpoint s “ 0`, hence the contribution from a neighborhood of
s “ 0 dominates. Since <p´zq ą 0, esz “ e´sp´zq decays for s Á 1{<p´zq. Therefore, from
(5), we have

ϕpzq “ eiπpγ´α´1q

ż 1

0

sα´1
p1 ´ sq

γ´α´1esz ds « eiπpγ´α´1q

ż 8

0

sα´1
p1 ´ sq

γ´α´1esz ds,

with an exponentially small error (in |z|) as <z Ñ ´8. Near s “ 0, by the Taylor
expansion, we see that

p1 ´ sq
γ´α´1

“ 1 ´ pγ ´ α ´ 1qs `
pγ ´ α ´ 1qpγ ´ α ´ 2q

2
s2 ´ ¨ ¨ ¨

Substituting this into the integral and using the Gamma integral in (8), we obtain

ϕpzq « eiπpγ´α´1q Γpαq p´zq
´α

„

1 `
αpα ` 1 ´ γq

p´zq
` ¨ ¨ ¨



.

Equivalently, using p´zq´α “ e´iπαz´α and p´zq´k “ p´1qkz´k,

ϕpzq „ eiπpγ´2α´1q Γpαq z´α

„

1 ´
αpα ` 1 ´ γq

z
´ ¨ ¨ ¨



, <z Ñ ´8.

Asymptotics of ϕpzq in Case II. From (6), for all arg σ P p´π, πq,

p1 ` σq
α´1

“ 1 ` pα ´ 1qσ `
pα ´ 1qpα ´ 2q

2
σ2

` ¨ ¨ ¨ .

Plugging this into (6) and using the Gamma integral in (8), we have

ϕpzq „ ez
„

Γpγ ´ αq

zγ´α
`

pα ´ 1qΓpγ ´ α ` 1q

zγ´α`1
` ¨ ¨ ¨



arg z P

ˆ

π

2
,
3π

2

˙

, |z| Ñ 8.

The integral in (6) is for arg σ “ 0. However, it converges for arg σ P p´π, πq. When
arg σ “ ´π ` ε for some small ε ą 0, the integral in (6) is convergent for <σz ă 0, i.e.,
arg z P p´π

2
` ε, π

2
` εq. When arg σ “ π ´ ε for some small ε ą 0, the integral in (6) is

convergent for <σz ă 0, i.e., arg z P p3π
2

´ ε, 5π
2

´ εq. Therefore, the asymptotic expansion
is valid for arg z P p´π

2
, 5π

2
q. Finally,

ϕpzq „ ezΓpγ ´ αqzα´γ

„

1 `
pα ´ 1qpγ ´ αq

z
` ¨ ¨ ¨



, arg z P

ˆ

´
π

2
,
5π

2

˙

, |z| Ñ 8.

Asymptotics for Case III. Except the factor Mpα, γq, the asymptotic property of the inte-
gral is the same as Case I, where one needs to consider two cases, <z ą 0 and <z ă 0.
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