1) a) Carefully state A. J. Hoffman's circulation theorem. Include all relevant definitions. (Do not include a proof!!)

b) In class, we gave conditions on a capacitated digraph that guaranteed that if it had a feasible circulation, then it had an integer valued one. State these conditions.

c) In class, using b), we proved that if f is a circulation in the digraph D, then there is a circulation g in D which satisfies $g(e) \in \{ [f(e)], [f(e)] \}$, for all arcs e in D. Using this, or otherwise, prove the following :

Let k be a positive integer, let $a(1)$, $a(2)$, ..., $a(k)$ be real numbers summing to the integer s. Then there are integers $b(1)$, $b(2)$, …, $b(k)$, also summing to s, with $b(i) \in \{ |a(i)|, [a(i)] \}$ for all $1 \leq i \leq k$.

2) a) Carefully state Phillip Hall's theorem on matchings in bipartite graphs.

b) Using a), or otherwise, prove that the edges of a regular bipartite graph can be partitioned into perfect matchings.

c) Give a counter example to show that b) is false if the word "bipartite" is removed.

3) Theorem. (Dirac, 1952) Let G be a simple graph with $n \geq 3$ vertices. If $\delta(G) \geq n/2$, then G is Hamiltonian.

 Suppose you wanted to prove Dirac's Theorem by induction on n and that, in the general case/ inductive step, you removed one vertex v from the graph G. If G-v is Hamiltonian, would that imply that G is Hamiltonian? Explain. Would you be able to apply induction to Gv to conclude that it is Hamiltonian? Explain. (Note: No inductive proofs of Dirac's Theorem are actually known, although perhaps a nice one is just waiting to be found!)

4) Here is my definition of a *condensation* graph $H(C, K)$ of the simple graph $G(V, E)$. Suppose that f : V **onto** C be a proper coloring of G, that is if uv \in E, then f(u) \neq f(v). We declare a, $b \in C$ to be adjacent in H, that is, ab $\in K$, if there is an edge uv $\in E$ with $f(u) = a$, $f(v) = b$.

a) Prove that G itself is one of its condensations.

 b) Show that a condensation graph of G with the fewest possible number of vertices is a complete graph.