
Probability (Math 7800/10) Time: 15:00–18:00, Aug. 20th

Prelim Exam 2025 Classroom: Parker Hall 250

Auburn University Committee: Le Chen (adm)
Auburn, AL Erkan Nane

Elvan Ceyhan

Print Full (First, Last) Name:

Instructions:
1. This is a closed book exam. The use of any electronic devices is strictly prohibited.
2. Please work out the problems in the space provided and show your answers clearly

and legibly. You will be provided draft papers, which won’t be graded.
3. You may bring two US letter-sized sheets with notes written on both sides for refer-

ence. You may write anything you wish on these sheets; however, the use of any other
materials, including books, additional notes, or electronic devices, is not permitted.

4. Coverage: The following chapters will be tested in this exam:

Billingsley’s Probability and Measure
§1 Borel’s Normal Number Theorem
§2 Probability Measures
§3 Existence and Extension
§4 Denumerable probabilities
§5 Simple random variables
§6 The law of large numbers
§7 Gambling systems
§10 General measures
§11 Outer measures
§12 Measures in Eulidean space
§13 Measurable functions and mappings
§14 Distribution functions
§15 The Integral
§16 Properties of integral
§17 The integral with respect to Lebesgue measure
§18 Product measure and Fubini theorem
§20 Random Variables and Distributions
§21 Expected Values
§22 Sums of Independent Random Variables
§25 Weak convergence
§26 Characteristic Functions
§27 The Central Limit Theorem
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Mark: (out of 100)

Question 1 (15 points) On the field B0 in (0, 1] define P(A) to be either 1 or 0
according as there does or does not exist some positive εA (depending on A) such that
A contains the interval

(
1
2
, 1
2
+ εA

]
. Show that P is finitely but not countably additive.

Problem 2.15 on p. 34. (Homework in 2022, not 2024)
Solution. Let B0 be the field of finite unions of pairwise-disjoint half-open intervals (a, b] ⊂
(0, 1]. According to the problem, P(A) is defined as follows:

P(A) :=

{
1, if ∃ εA > 0 with (1/2, 1/2 + εA] ⊂ A,

0, otherwise.

(1) Finite additivity. It suffices to establish the property for two disjoint sets and then
proceed by induction. Let A, B ∈ B0 be two disjoint sets. Since both A and B are finite
unions of half-open intervals, and A ∪ B is also a finite union of such intervals, there are
only two possible cases to consider:

Case I: For some ε > 0, (1/2, 1/2 + ε] ⊂ A∪B. Since A and B are disjoint, there is some
ε′ ∈ (0, ε] such that

either (1/2, 1/2 + ε′] ⊂ A or (1/2, 1/2 + ε′] ⊂ B.

Hence, either P(A) or P(B) is 1 and the other is 0. Therefore,
P(A ∪B) = 1 = P(A) + P(B).

Case II: For some ε > 0, (1/2, 1/2 + ε] 6⊂ A ∪ B. In this case, P(A ∪ B) = 0 because one
cannot find ε′ > 0 so that (1/2, 1/2 + ε′] ⊂ A ∪ B. On the other hand, neither A nor B
contains an interval to the right of 1/2. This implies that P(A) = P(B) = 0. Therefore,

P(A ∪B) = 0 = P(A) + P(B).

Combining both cases, we conclude that P is finitely additive on B0.

(2) Not countably additive. For n ≥ 1, define

An :=
(
1/2 + 2−n−1, 1/2 + 2−n

]
∈ B0.

These An are pairwise disjoint and
∞⋃
n=1

An = (1/2, 1].

Each An does not contain any interval of the form (1/2, 1/2 + ε], so P(An) = 0. But the
union (1/2, 1] does contain such an interval (e.g. (1/2, 3/4]), hence

P

(
∞⋃
n=1

An

)
= 1.

Therefore,

P

(
∞⋃
n=1

An

)
= 1 6= 0 =

∞∑
n=1

P(An).

This shows that P is finitely but not countably additive on B0.
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Question 2 (15 points)

1. Construct an open, dense set in (0, 1) with measure near 0 (as small as you
want).

2. Construct a nowhere dense set B ∈ (0, 1) with measure near 1 (as close to 1 as
you want).

Hint: The set A is by definition dense in the set B if for each x ∈ B and each open
interval J 3 x, it holds that J ∩A 6= ∅. This is the same thing as requiring that
B ⊂ A−. The set E is by definition nowhere dense in the set B if each open
interval I contains an open interval J such that J ∩ E = ∅.

Examples 3.1 and 3.2 on p. 44, which were discussed in class.

Question 3 (20 points) Consider the function dn(ω) defined on the unit interval
by the dyadic expansion

ω =
∞∑
n=1

dn(ω)

2n
= .d1(ω)d2(ω)d3(ω) . . . ,

where dn(ω) ∈ {0, 1} is the n-th digit in the dyadic expansion of ω ∈ [0, 1]. Let `n be
the length of the run of 0’s starting at dn(ω): `n(ω) = k if dn(ω) = · · · = dn+k−1(ω) = 0
and dn+k(ω) = 1. Show that

P
(
ω : lim sup

n

`n(ω)

log2 n
= 1

)
= 1,

in the following steps:

1. (5 points) For any r ≥ 0, show that

P (ω : `n(ω) ≥ r) = 2−r,

2. (5 points) Let {rn} be a sequence of positive reals such that
∑∞

k=0 2
−rk < ∞.

Show that

P (ω : `n(ω) ≥ rn infinitely often) = 0.

3. (5 points) By setting rn = (1 + ε) log2 n with ε > 0, deduce that

P
(
ω : lim sup

n

`n(ω)

log2 n
≤ 1

)
= 1,

4. (5 points) If rn is nondecreasing and
∑∞

n=1 2
−rnr−1

n diverges, show that

P (ω : `n(ω) ≥ rn infinitely often) = 1.
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Then apply this to rn = log2 n to show that

P (ω : `n(ω) ≥ log2 n infinitely often) = 1.

Finally, we can make the final conclusion from Parts 3 and 4.

Hint For part 4, define {nk} inductively by n1 = 1 and nk+1 = nk + rnk
, k ≥ 1. Let

Ak := {ω : `nk
(ω) ≥ rnk

} = {ω : di(ω) = 0 for all nk ≤ i < nk+1} .

Show that {Ak} are independent and
∑∞

k=1 P(Ak) diverges. Then use the second
Borel-Cantelli lemma to conclude that P(lim supAk) = 1. Finally, show that
lim supAk ⊆ {ω : `n(ω) ≥ rn infinitely often}.

Examples 4.11 and 4.15 on pp. 59–62, which were studied in details in class.

Question 4 (10 points) Construct an example of Xn → X in probability but not
almost surely. You may follow the steps below:

1. (5 points) Let

A1 =

(
0,

1

2

]
, A2 =

(
1

2
, 1

]
,

and

A3 =

(
0,

1

4

]
, A4 =

(
1

4
,
1

2

]
, A5 =

(
1

2
,
3

4

]
, A6 =

(
3

4
, 1

]
.

Define the next eight, A7, · · · , A14 as the dyadic intervals of rank 3. Let Xn :=
1An . Show that Xn → 0 in probability.

2. (5 points) Show that

P (ω : Xn(ω) → 0, n → ∞) = 0 6= 1.

Hence, we can conclude that Xn → 0 in probability but not almost surely.

Example 5.4 on p. 71, which was discussed in class.

Question 5 (15 points)

1. (5 points) State the definition of the uniform integrability of a sequence {fn}.

2. (10 points) Let µ(Ω) < ∞ and fn → f almost everywhere. Show that if {fn} is
uniformly integrable, then f is integrable and

lim
n→∞

∫
fn dµ =

∫
f dµ.

Proof of Theorem 16.14 on p. 217.
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Question 6 (25 points) Suppose that for each n

Xn1, · · · , Xnrn

are independent. Set Sn = Xn1 + · · ·+Xnrn . Assume that

E [Xnk] = 0, σ2
nk = E

[
X2

nk

]
, s2n =

rn∑
k=1

σ2
nk.

The aim is to show that the central limit theorem (CLT) under the Lindeberg condition:

lim
n→∞

rn∑
k=1

1

s2n

∫
|Xnk|≥εsn

X2
nkdP = 0, for all ε > 0 =⇒ Sn

sn
⇒ N(0, 1). (CLT)

Carry out your arguments in the following steps:

1. (5 points) Show that∣∣∣∣eitx − (1 + itx− 1

2
t2x2

)∣∣∣∣ ≤ min
(
|tx|2, |tx|3

)
.

2. (5 points) Show that for all z1, · · · , zm, and w1, · · · , wm ∈ C such that |zi| ≤ 1
and |wi| ≤ 1, it holds that∣∣∣∣∣

m∏
i=1

zi −
m∏
i=1

wi

∣∣∣∣∣ ≤
m∑
i=1

|zi − wi| .

3. (15 points) Prove the (CLT) using parts 1 and 2.

Theorem 27.2 on p. 359, which states the central limit theorem under the
Lindeberg condition. We have covered the proof of this theorem in detail in
class. Both the result and its proof are highlights of the course.
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