STAT 7600/7610 Mathematical Statistics Preliminary Exam

August 17, 2024

Statistics Group, Department of Mathematics and Statistics, Auburn University

Name:_____

- 1. It is a closed-book in-class exam. You are allowed to have formula sheets of two pages and double-sided.
- 2. A calculator is allowed.
- 3. The proctor will provide as many blank sheets of paper as you need.
- 4. Show your work to receive full credit. Highlight your final answer.
- 5. Turn in your the exam paper (the three typeset pages handed to you) along with your work-sheets stabled to the back.
- 6. Planned Time: 240 minutes (8:00 am-12:00(noon)).
- 7. Five problems will be graded. Problems 1 and 2 are mandatory. Then, you must select three problems from Problems 3–7 to submit and grade. The rest problems will not be graded. Indicate your selections in the table.

1	2	3	4	5	6	7	Total

The density, mean, and variance of selected common distributions.

• Normal (μ, σ^2)

$$f(X) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{1}{2\sigma^2}(x-\mu)^2\right) \quad E(X) = \mu \quad \operatorname{var}(X) = \sigma^2$$

• Gamma(α, β) (shape-rate parametrization)

$$f(x) = \frac{\beta^{\alpha}}{\Gamma(\alpha)} x^{\alpha-1} e^{-\beta x}$$
 $E(X) = \alpha/\beta$ $\operatorname{var}(X) = \alpha/\beta^2$

If $X_1 \sim \text{Gamma}(\alpha_1, \beta), X_2 \sim \text{Gamma}(\alpha_2, \beta)$, and X_1 is independent of X_2 , then

 $\beta(X_1 + X_2) \sim \text{Gamma}(\alpha_1 + \alpha_2, 1).$

• χ_p^2

$$f(x) = \frac{1}{\Gamma(p/2)2^{p/2}} x^{(p/2)-1} e^{-x/2} \quad E(X) = p \quad \operatorname{var}(X) = 2p$$

• Beta (α, β)

$$f(x) = \frac{1}{B(\alpha,\beta)} x^{\alpha-1} (1-x)^{\beta-1} \quad E(X) = \frac{\alpha}{\alpha+\beta} \quad \operatorname{var}(X) = \frac{\alpha\beta}{(\alpha+\beta)^2(\alpha+\beta+1)}$$

• Poission(λ)

$$f(x|\lambda) = \frac{\lambda^x e^{-\lambda}}{x!}$$
 $E(X) = \lambda$ $\operatorname{var}(X) = \lambda$

Throughout, the asymptotics whenever mentioned is in terms of the sample size approaching infinity.

Mandatory questions

Problem 1: Let X_1, \ldots, X_n be i.i.d. random variables with density function

$$f(x|\theta) = \frac{\theta}{2^{\theta}} x^{\theta-1}, \quad 0 < x < 2, \quad \theta > 0.$$

- (a) Find the maximum likelihood estimator (MLE) of θ .
- (b) Find the maximum likelihood estimator (MLE) of $\eta = 1/\theta$. State any property/result you are using when answering this.
- (c) Determine if the MLE of η is biased. If it is, find the bias.

Problem 2: Under the same setting as Problem 1.

- (a) Find the Fisher Information $I(\theta)$ for this distribution.
- (b) Find the asymptotic distribution of the MLE $\hat{\theta}$ as $n \to \infty$.
- (c) Applying the delta-method, find the asymptotic distribution of the MLE $\hat{\eta}$ as $n \to \infty$.
- (d) Construct an approximate 95% confidence interval for θ .
- (e) Construct the Wald test for testing the hypothesis $H_0: \theta = \theta_0$ v.s. $H_a: \theta \neq \theta_0$. State the test statistic and the rejection region at the asymptotic level 5%.

Choose three from the five

Problem 3: Let X_1, \ldots, X_n be i.i.d. random variables with the density function

$$f(x) = \sqrt{\frac{\lambda}{2\pi x^3}} \exp\left(-\frac{\lambda(x-\mu)^2}{2\mu^2 x}\right), \quad x > 0, \quad \mu > 0, \ \lambda > 0.$$

- (a) Suppose that λ is known and μ is the parameter. Show that the given family of distributions belongs to the exponential family. You need to identify all components in the pdf of an exponential family distribution.
- (b) As in (a), find a minimal sufficient statistic for μ .
- (c) If both λ and μ are unknown parameters, find a minimal sufficient statistic for μ and λ .
- (d) Find $E(\sum_{j=1}^{n} X_j)$ and $E(\sum_{j=1}^{n} 1/X_j)$.

Problem 4: Let X_1, X_2, \ldots, X_n be i.i.d. random variables with the probability density function

$$f(x \mid \mu) = \frac{1}{x\sqrt{2\pi}} \exp\left(-\frac{(\log x - \mu)^2}{2}\right), \quad x > 0, \quad \mu \in \mathbb{R}.$$

- (a) Derive the likelihood ratio test (LRT) for testing $H_0: \mu = \mu_0$ vs. $H_a: \mu \neq \mu_0$.
- (b) Determine the asymptotic distribution of the test statistic under H_0 . Compute the critical value for the LRT and determine the rejection region at the asymptotic level α .
- (c) Invert the test to obtain a $(1 \alpha) \times 100\%$ approximate confidence interval for μ .

Problem 5: Let (X_1, \ldots, X_n) be iid from a distribution with density

$$f(x \mid \theta) = \frac{\theta^3}{2} x^2 e^{-\theta x}, \quad x > 0, \quad \theta > 0.$$

- (a) Find a minimal sufficient statistic T_n for the family of distributions with $\theta > 0$.
- (b) Show that the distribution family has monotone likelihood ratio in T_n .
- (c) Find the uniformly most powerful test for $H_0: \theta \leq \theta_0$ versus $H_a: \theta > \theta_0$ at the significance level α . Express the rejection region and find the critical value (in a closed form).

Problem 6: Let X_1, X_2, \ldots, X_n be i.i.d. random variables from a Gamma distribution with shape parameter α and rate parameter β , i.e.,

$$f(x) = \frac{\beta^{\alpha}}{\Gamma(\alpha)} x^{\alpha - 1} e^{-\beta x}, \quad x > 0, \quad \alpha > 0, \beta > 0.$$

- (a) Find a pivotal quantity for constructing a confidence interval for β assuming α is known.
- (b) Construct a confidence interval for β using the pivotal quantity found in part (a).
- (c) Derive the likelihood ratio test (LRT) for testing H_0 : $\beta = \beta_0$ v.s. H_a : $\beta \neq \beta_0$ assuming α is known. State how the critical value can be determined at a given significance level α .
- (d) Construct a confidence interval for β by inverting the acceptance region of the LRT derived in part (c).

Problem 7: Let X_1, X_2, \ldots, X_n be i.i.d. random variables from a Poisson distribution with parameter λ , i.e.,

$$f(x|\lambda) = \frac{\lambda^x e^{-\lambda}}{x!}, \quad x = 0, 1, 2, \dots, \quad \lambda > 0.$$

In the following, use the asymptotic significance level α and the asymptotic confidence level $1 - \alpha$.

- (a) Derive the Wald test for testing $H_0: \lambda = \lambda_0$ vs. $H_a: \lambda \neq \lambda_0$. Clearly state the test statistic, the rejection region and the critical value.
- (b) Show that the score test is equivalent to the Wald test.
- (c) Consider the simple hypothesis $H_0 : \lambda = \lambda_1$ v.s. $H_a : \lambda = \lambda_2$ where λ_2 and λ_1 are fixed constants. What is the most powerful test of level α for the hypothesis? Clearly state the test statistic and state how to determine the critical value.
- (d) Is there a uniformly most powerful (UMP) test for any $\lambda_2 > \lambda_1$? Explain.