
Introduction & Motivation 

Suppression of Density Limit Disruptions in CTH 

Determination of Current and q Profiles Using SXR Emissivity Measurements 
CTH is a low aspect-ratio, tokamak/stellarator hybrid with 
flexible magnetic configuration. 
 Designed to address strong 3D shaping effects on MHD 

instabilities and disruptions 
 Ability to drive ohmic current within pre-established ECRH 

stellarator plasma 
 Flexible vacuum field configuration to change the amount of 3D 

fields applied 
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CTH plasmas are highly non-axisymmetric with or without 
driven plasma current 

3D equilibrium reconstruction is a critical tool for 
understanding 3D confinement and stability 

 V3FIT[1], which uses VMEC[2] as the equilibrium solver, is used 
to reconstruct CTH plasmas 

 V3FIT optimizes the plasma parameters to achieve the best 
agreement between modeled signals and experimental 
measurements 

 V3FIT is capable of utilizing many types of diagnostics including: 
magnetic diagnostics, SXR measurements, interferometer signals, 
Thomson scattering measurements  

Internal inputs improve reconstruction of plasma core 

V3FIT Signal effectiveness  Determination of current and transform profiles is crucial 
for understanding the 3D MHD instability and disruption 
mechanisms in Compact Toroidal Hybrid (CTH) 

 Current distribution can be completely determined 
purely from geometric information of magnetic flux 
surfaces [3] 

 SXR data has been used to infer current and q profiles in 
JET, PEGASUS, DIII-D 

 Flux surfaces are reconstructed within V3FIT using SXR 
emissivity measurements, assuming SXR emission to be 
constant on flux surfaces 

 Total of SXR 120 signals used in V3FIT 
 Raw measurements are deconvoluted, filtered 

and averaged over 1 𝑚𝑚𝑚𝑚 
 V3FIT initialized with two ten-segment linear 

emissivity profiles  
 SXR inputs are treated as line-integrated signals 

 Reconstructions done with three methods: using magnetic data 
only; using prior knowledge of the q=1 surface and magnetic data; 
using SXR and magnetic data 

 Reconstructed edge q values are consistent for all reconstructions 
 Reconstructed central q values are within 15% of reconstructions 

using SXR data and the inversion information 

Reconstructing sawtoothing plasma with SXR data 

 Reconstructed current and q profile 
consistent with that using the prior 
constraint of inversion radius (q=1) 
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 Signal effectiveness is a dimensionless, normalized ratio of the fractional 
reduction in the reconstructed parameter variance to the fractional 
reduction in the signal variance 

 It essentially tells which measurements are more effective in determining 
specific plasma parameter 

 Current profile parameterization: 

 𝐽𝐽 = 𝐽𝐽0(1 − 𝑆𝑆𝛼𝛼)6 

 Signal effectiveness with respect 
to α calculated for all magnetic 
and SXR channels 

 Averaged over 144 different 
plasmas 

Most effective SXR channels are from the edge with enough 
signal strength 

Density limit disruptions observed in CTH 

 Two discharges with 
similar vacuum transform 
(ιvac = 0.05) 

 Blue discharge disrupted 
with ramping density 

 Black discharge did not 
disrupt with lower density 

Empirical Greenwald density limit 

 Operating density limit for all tokamaks: 𝑛𝑛𝐺𝐺 ≡
𝐼𝐼𝑃𝑃
𝜋𝜋𝑎𝑎2

 [4] 

 Density limit associated with MHD instability 
• Edge cooling of dense edge plasma initiates narrowing of plasma 

current profile which becomes MHD unstable to tearing modes 

 Disruptions observed in CTH with sufficiently high 
densities 

 Phenomenology of hybrid discharge 
terminations similar to tokamak 
disruptions:  

• Current spike followed by rapid 
decay 

• Increasing density 

• Negative loop voltage spike 

• Strong coherent MHD precursor 

Growing m/n=2/1 tearing mode locks prior to disruption 

m=2 

n=2 
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Toroidal array of Bθ probes 

 𝑞𝑞=2 surface moving towards 
plasma core before disruption 

 Sudden peaking of current 
profile (decreasing of 
parameter α) just prior to 
disruption 

 Ensemble of disrupting plasmas with 
varying vacuum transforms 

 Reconstructions of current profile 
performed just before disruption 

  Current profile narrows to a greater 
extent as the external transform is 
raised 

Density limit disruptions modified by applied 3D fields 

 For a given current, higher 
densities are achieved with 
addition of vacuum transform 

 Greenwald limits calculated using 
toroidally averaged poloidal cross-
section areas 

 Normalized density limit increases by 
a factor of nearly 4 as the vacuum 
transform is raised 

CTH operational space and three types of disruptions 
observed 

Central SXR chord 

 Similar transform ιvac = 0.07 

 Different loop voltage settings 

 Disruption correlates with 
plasma current and density 

 Disruption depends on plasma 
current and density, not the 
evolution of the discharge 

 Operation with deuterium 
extends achievable plasma 
currents and densities to 
higher values 
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