

AUBURN UNIVERSITY MARCHING BAND: PERCUSSION

Thank you for your interest in the 2025 Auburn University Drumline. The Auburn University Marching Band has a proud tradition of excellent performances and great school spirit, and we are excited for you to become a part of that tradition.

The AUMB is looking for exceptional players who are dedicated, responsible, and hard-working. During the audition process we will ask you to do things that may be new or different from the way you've learned them previously – we encourage you to be flexible and keep an open mind. You will find that there are many viable ways to approach your instrument. We simply ask that you do your best to learn our way so that we can be a unified team. Many people ask what is required to make the line – the answer is to have a great attitude, work hard, and hold yourself to a high individual standard.

RYAN ENGLISH PHOTOGRAPHY

During the first weekend, you will play individually, with the section you're auditioning for, and with the percussion section as a whole. We typically have more people audition than we have instruments for. For this reason, we ask that you choose a first choice and a second choice of instrument to audition on. If for some reason we are unable to offer you a spot on your preferred instrument, we still want you to be a part of the percussion section in a role that can utilize your strengths.

Included in this packet are audition exercises and music. We expect you to learn this music before coming to auditions; we will use it to teach technique, establish concepts, and introduce other fundamental ideas. Regardless of difficulty, you should always emphasize ***precision***. This means precise rhythms, precise heights, precise beating zones, correct pitches, and consistent tempo (practice with a metronome). We also want you to play with ideal sound quality at all times. Those auditioning for a section in the battery (snare, quads, bass, cymbals) must be prepared to mark time to all music.

We're thrilled that you're interested in joining the Auburn University Drumline and can't wait to meet you at the audition!

Sincerely,
The AUMB Percussion Staff

TECHNIQUE PROSE

REBOUND STROKE

Power and fluidity are the top priorities when executing a rebound stroke. This means calibrating the perfect balance between fluid preps, high-velocity strokes, and a rebound that works in equal partnership with the playing surface.

FLUID PREPS:

All initial preps – whether single or double-handed – should use a modified Moeller stroke. This simply means that the butt of the stick moves first. It's much more subtle than a traditional Moeller stroke – just enough initial wrist pout to add fluidity to the prep. We will inject more Moeller when playing up-strokes.

To be clear, we don't use Moeller for every note. We only use it when moving a stationary stick from the down position to the top of the stroke – i.e. strictly for initial preps and up-strokes.

This principle is isolated in the AU Rebounds exercise. Each time you are instructed to *lift* you should use a fluid, modified Moeller prep.

HIGH-VELOCITY STROKES:

Our brass section plays very loud. If we don't play with high-velocity strokes, we won't be heard. The balance is, you must still use fluid preps and play with rebound (there are cases where you will be asked to play *marcato*, to be defined later).

This velocity is created from a combination of back-finger support (or thumb for traditional grip) and wrist snap. While we don't initiate the stroke with the back fingers – we drive primarily the wrist – the fingers play an essential supporting role. They help propel the stick through space and create more acceleration toward the playing surface.

Wrist snap is central to our approach. Similar to the last-second snap used when throwing a baseball/shooting a basketball, it adds an extra level of rotational velocity that significantly increases the fullness of our ensemble sound. Our definition of wrist snap is as follows:

The break of wrist that occurs when the point-of-contact is below the hand.

This requires that the wrist be in a neutral/slightly pouted position when the stick makes contact with the playing surface. The wrist should not be pouted to the extent that stick hits the playing surface with a glancing trajectory – the adjustment is subtle. This does not apply to left-hand traditional grip, as the motion occurs in a different anatomical context (elbow pronation vs. wrist break).

Another reason we use this “neutral wrist” approach is to emphasize health for our students. Playing with the wrist in a perpetually engaged position can lead to overuse-related injuries such as tendonitis and carpal tunnel syndrome. Our approach keeps the wrist in a more natural, low-stress position while still allowing us to produce a full sound.

Note: many groups do not play this way. The most common approach is to have the wrist in a perpetually engaged/concave position, pulling the stick into the playing surface with back fingers. Our approach, grounded in physics and anatomy, allows us strike the desired balance between power and fluidity.

EQUAL PARTNERSHIP:

A truly efficient/ergonomic rebound stroke requires that we work in equal partnership with the rebound of the playing surface. For most instruments in our ensemble, that implies the following process:

1. Drive the stick into the head from the desired height à
2. Relinquish control of the stick and allow Newton's third law to act unhindered à
3. Control the rebound to stop the stick at the desired height (of the following note)

There are, of course, certain nuances to this process:

- Certain parts of the hand stay engaged during the rebound (such as the back fingers staying connected to the stick), but they simply accompany the motion driven by the playing surface. In other words, no part of your hand or arm should hinder Newton's third law (*every action has an equal and opposite reaction*).
- Some playing surfaces don't possess as much rebound as others (such as marimba or bottom bass). Even then you must still work in partnership with the playing surface – you just have to do a little more lift-oriented work to accommodate for the lesser rebound. The trick here is that your lift has to be precisely timed (not too late, and not too early). Failure to properly time your lift will result in a less-than-ideal tone and/or inefficiencies in your motion.

MARCATO PLAYING

Certain musical contexts make a rebound stroke impractical or unnecessary. In these contexts we will use a marcato stroke. These moments will be defined on a case-by-case basis.

A marcato stroke is initiated the same as a rebound stroke, but very briefly hinders the rebound after making contact with the playing surface. A lift is then initiated immediately following the contact. This is typically a stylistic choice, as it is indisputably less efficient than a rebound stroke.

We often use a marcato style when playing the alternating stickings of *Motion* at slower tempos.

HEIGHT CHANGE

First let's lay out the details of our heights system:

Dynamic	Height
pp	1"
p	3"
mp	6"
mf	9"
f	12"
ff	15"

Slash dynamics (i.e. *f/mp*) are used to communicate accent/tap relationships. The first dynamic indicates the accent height and the second indicates tap height. For example, *f/p* would indicate 12" accents and 3" taps.

We use a three-tiered height system here at Auburn. The slash dynamics communicate accent/tap heights, and tenutos are used to delineate a middle ground between the two. In this light, tenutos should be interpreted as 3" below the defined accent height.

Sometimes crescendos/decrescendos will be book-ended with specific dynamics. When encountering crescendos or decrescendos that don't specify a beginning or ending dynamic, it should be assumed that the heights gradually traverse from the tap height to the accent height (or vice versa).

DOWNSTROKES/CONTROLLED STROKES

Changing between these heights requires a combination of downstrokes and upstrokes. A downstroke is executed simply by suppressing the rebound of the stick. The back fingers, bottom of the palm, and the forearm work as a team to absorb the force created by Newton's third law (aka "rebound"). In other words, the goal of a downstroke is to intentionally hinder Newton's third law – as opposed to rebound strokes where the goal is to leave this law "unhindered".

While the back fingers apply to pressure to the stick during a downstroke, they should not go so far as to squeeze the stick. We view pressure and squeezing as related but distinct concepts along a spectrum. The back fingers should apply pressure, but not to the extent that the muscles and tendons in the hand/fingers become tense.

The lower-outside quadrant of the palm also plays a significant role in the downstroke, especially as a shock absorber. An efficient downstroke requires that this fleshy quadrant of the palm remain in contact with the stick at the end of the stroke.

Weight from the forearm is the third and crucial piece of the downstroke puzzle. Don't mistake this as a necessity for elbow movement – some downstrokes don't require any initiation from the elbow. This is more about making sure the forearm has leverage on the bead of the stick and transfers its weight through the top of the hand to suppress rebound.

You cannot play effective downstrokes if your hand doesn't have leverage on the bead of the stick. Like the "neutral wrist" concept outlined earlier, this requires that the resting position of the hand be higher in the vertical plane than the point of contact on the playing surface. This can be overdone, resulting in a severely steep stick angle and a glancing contact with the playing surface. Be sure you explore these extremes when practicing and find the point on the spectrum where you can play with both leverage and direct/maximum impact into the playing surface.

Snare drummers should keep in mind that the left thumb will often fill the role of the back fingers in the right hand. Be sure that the thumb is connected to the first knuckle of the index fingers so that the suppression force can properly transfer through the stick. Similarly, pressure can be applied by the pinky/ring finger combo, but not to the extent of squeezing.

While we typically use "downstrokes" in our day-to-day vocabulary, we sometimes refer to them as "controlled strokes." This semantic change can be helpful for those who have trouble staying relaxed when playing downstrokes. When playing downstrokes, what you are essentially doing

is controlling the rebound. This includes a height change from 12" to 9" in the "downstroke" category. In other words, it uses the same procedures/anatomy outlined above, but to a lesser extent. We will use this vocabulary at times to draw comparisons between traditional 12-to-3 downstrokes and smaller height changes/gradual decrescendos.

UPSTROKES/MOELLER STROKE

Typical upstrokes have a simple execution – lift the stick to the desired height using the prescribed ratio of wrist and elbow. We will use this technique on a case-by-case basis, but our default upstroke uses a modified Moeller stroke. This simply means that the butt of the stick moves first.

It's much more subtle than a traditional Moeller stroke – just enough initial wrist pout to add fluidity to the upstroke. It's very important that we don't over-dramatize the motion. We will play traditional Moeller strokes on occasion, but this modified approach is extremely subtle. Here's a good litmus test – place your sticks in the rest position, then pout the wrist until the bead touches the playing surface. At this point the wrist pout/inversion process stops and you begin whipping/correcting back to a traditional position of bead-above-hand (*caveat: when doing this test make sure the fulcrum is stationary in the vertical plane*).

Here's another way to think about it: in the specific context of upstrokes starting at 3", the 'tap' will strike the playing surface as the wrist is rising. In fact, it is the pout of the wrist and the resulting inversion of the stick that causes the bead to – more or less – collide with the playing surface.

The end result should be gains in efficiency and fluidity. You can also add velocity to your stroke through the whipping motion and proceeding snap as your wrist crosses the neutral plane.

DOUBLE STROKES AND TRIPLE STROKES

Effective execution of double strokes requires that the performer possess complete control of the following variables both between and within all note pairings: stick height, velocity, beating zone(s), and rhythmic space. Successfully achieving these goals necessitates a careful and complex partnership between the elbow, wrist, fulcrum, back fingers, and the rebound of the playing surface. While these relationships can be viewed as a sequence, the relationship is not that simple. Regardless, an oversimplified sequence of motion is outlined below:

1. The elbow initiates the stroke from the prescribed stick height
2. The wrist supports this elbow motion at a predetermined, context-driven ratio
3. The stick strikes the playing surface
4. The bead of the stick rebounds according to Newton's third law, but pressure is applied at the fulcrum to keep it (the fulcrum) relatively stationary in the vertical plane
5. The back fingers flex open (but stay in contact with the stick) to allow the stick to rotate around the fulcrum
6. Once reaching the desired height of the second note, the back fingers act like a spring (in partnership with fulcrum pressure) to snap the stick back into the playing surface
7. The fingers stay closed in a feeling that resembles a downstroke
8. The energy from this 'downstroke' is transferred into an elbow-led rebound – the feeling is similar to pushing yourself off the ground with your hands
9. Stop the rebound at the desired height and repeat

Again, this is oversimplified, as it glosses over some important nuances.

ELBOW/WRIST RATIO

Double strokes are rarely (if ever) driven by 100% elbow. We use varying ratios of elbow to wrist depending on stick height and hand speed. They also vary depending on the rebound of the playing surface (i.e. quads

might use a different ratio on the spock vs. drum 4 for the same exact roll figure). Below are some general rules of thumb:

- Elbow is the primary driver, so it should never generate less than 50% of the stick height
- Slower hand speeds necessitate more wrist support and therefore a higher percentage of wrist
- Faster hand speeds typically weight the ratio towards the elbow
- Higher stick heights necessitate more wrist support and therefore a higher percentage of wrist
- Lower stick heights typically weight the ratio towards the elbow

It's important to remember that these variables are not mutually exclusive. For this reason, we don't use a fixed system of ratios. There would be so many interconnected options and it would be impossible to remember. Instead we take it case-by-case. Sometimes we just test out the roll with different ratios and decide in the moment what provides the greatest amount of control over stick height, velocity, beating zones, and rhythmic space.

FULCRUM PRESSURE

The amount of pressure applied by the fulcrum – thumb, index finger, *and* middle finger – is an integral variable in this system, but one that really complicates the equation. Typically, the smaller the space between bounces, the greater the fulcrum pressure. This again varies across various combinations of stick height and hand speed (*it's important to remember here that hand speed and the space between notes are closely related concepts but not exactly the same*).

Because our approach to these techniques is largely driven by the elbow and back fingers, fulcrum pressure can seem to fade into the background – especially when playing paradiddle figures, isolated double strokes, or loud/open rolls. Fulcrum pressure becomes much more important when playing faster roll speeds – so important in fact that the role of the back fingers becomes less essential.

DOWNSTROKE/ENERGY TRANSFER

It can be confusing and sometimes counterproductive to refer to the end of a double stroke as a downstroke. We use this vocabulary simply as a comparison to the *feeling* of a typical downstroke. Often, the space between double stroke pairs is very small, meaning you have very little time to prep for the next note and no luxury to waste time downstroking. That's why we often refer to the back fingers as a *spring* in this context. They have an elastic nature that wants to be in equilibrium (i.e. the resting position), but the act of repeatedly stretching and releasing the spring prevents it from truly coming to rest.

The most important thing to take away from this downstroke comparison is the transfer of energy into the lift. Instead of absorbing the shock of the impact like we would during a downstroke, we transfer that energy into the elbow as it quickly retracts and moves the stick back to the top of the stroke. It's not a rebound in the traditional sense, but the goal is the same – be as efficient as possible when preparing for the next note.

TRIPLE STROKES

Triple strokes use the exact same sequence and initiation of motion, but have to rely a lot more on the back fingers and the rebound of the playing surface to enhance the quality of the third note. In addition, executing all three notes with equal stick height and velocity requires sheer power from the back fingers – there's no way around it.

At Auburn, most triple strokes in our vocabulary call for a natural decay. This not only reduced the workload on the back fingers, but also inject a natural inflection to the phrase. In this case the sequence of motion is still the same, but it will a little bit like dribbling a basketball down to the floor. Using a natural decay often results in the undesirable side effect of collapsed rhythms. Therefore, it is imperative that the back fingers – though working in partnership with rebound – have full control of the stick height and rhythmic space.

GRIDS

Simple steps to successful gridding:

1. Mark time (or manifest the pulse in some way) at all times
2. Play with accents only w/ a met if you're having trouble keeping your feet in time
3. BE PRECISE – being approximate just so you can play fast or play a difficult rudiment is a complete waste of your valuable time
4. Challenge yourself – grids possess an arguably endless spectrum of difficulty, meaning that even the best drummers can find a grid/tempo that causes them to fail
5. Grids are beneficial for EVERYONE (*cymbals and front ensemble included*)

Here's a list of potential grids to start with – but this is only the beginning! Try something new if you've “mastered” the possibilities below.

- Flams on accents
- Flams on 1 (or any partial), move the accent
- Flam drags
- Cheeses
- Tap drags
- Tap fives
- Tap rolls
- Full rolls
- Diddles on 1 (or any partial), move the accent
- Paradiddles
- Flam paradiddles
- Book reports
- Buzz presses on dotted 8ths, move the accent (duple only)
- And many more

LATERALS (FE)

4-mallet lateral stroke technique has many parallels to the double stroke technique outlined above. Wrist torque often substitutes for the function of the back fingers. These similarities include:

- The elbow initiates the stroke from the prescribed stick height
- Once reaching the desired height of the second note, the wrist acts like a spring to snap the second mallet into the playing surface
- The energy from a ‘downstroke’ is transferred into an elbow-led rebound – the feeling is similar to pushing yourself off the ground with your hands
- Stop the rebound at the desired height and repeat

There are obvious differences, primarily caused by differences in grip and the lack of rebound:

- Back fingers are not involved except to stabilize the outside mallet
- The “see-saw” momentum transfer of the mallets serves as a partial substitute for rebound
- There is less overlap between the functions of the elbow and wrist – the delegation is mostly partitioned, in that the elbow provides stick height and the wrist provides torque/velocity
 - o The elbow does provide some extra linear velocity (as opposed to rotational velocity/torque), and the wrist does generate as much stick height as the length of the mallet will allow – these overlaps are minimal and play a supporting role at best.
 - o In other words, there is no elbow/wrist ratio

TORQUE

Rotational velocity – hereafter referred to as torque – is one of the two essential ingredients to a successful lateral stroke (the other being buoyancy in the elbow, to be expounded on in the next section). We will often refer to this torque being supplied by the elbow, but it’s important to

remember that – from an anatomical point of view – it is actually elbow pronation (similar to snare drum traditional grip).

This torque is what drives single-independent, alternating, and lateral strokes. The difference for lateral strokes is that torque creates two equal notes within one larger gesture. Alternating strokes are two notes with two individual and distinct gestures, and single-independent strokes are single notes with individual gestures. By gesture we mean the initiation of a unique, self-contained movement. These can often (but not always) be delineated by a single complete extension and retraction of the elbow.

Torque requires a lot more energy than traditional linear velocity. This is because the perception of speed is relative, and the linear velocity of an object (or mallet) moving along a curved (or rotational) path is often faster than what we perceive, especially when the curve is sharp or the object's speed is high. In other words, torque requires more work than a linear stroke from the same “stick height”. Here’s the most important point: because your wrist is tasked with more demanding work, it is essential that you delegate stick height to the elbow. Any different approach will lead to excessive demand on your wrist, the results of which are reduced thresholds of hand speed and sound quality, as well as the increased possibility of long-term injury.

BOUYANCY

Bouyancy is a term we use to describe the role of the elbow when playing alternating and lateral strokes. The wrist provides torque/velocity while the elbow provides buoyancy/stick height. Essentially, this buoyancy is a proxy for rebound – the playing surface doesn’t actually provide much rebound to partner with, so the vertical “bounce” of the elbow injects fluidity and efficiency into the technique.

In the specific context of lateral strokes, buoyancy is essential for moving efficiently between rapid successions of lateral gestures. A lack of buoyancy results in a rigid, high-velocity/low-stick-height approach driven strictly by the wrist. The negative side effects of this rigid approach are numerous, including imprecise rhythms, uneven sound quality

between and within hands, harsh tone, poor aesthetic, and the increased possibility of long-term injury.

In summary, the ideal delegation between wrist and elbow should result in a high-efficiency, fluid stroke that exhibits a balanced relationship between torque and buoyancy. Positive side effects include increased rhythmic control, even stick heights, increased tempo thresholds, full/rich tone, a fluid/relaxed/effortless aesthetic, increased dexterity, and improved health/longevity of joints and tendons.

ALTERNATING STROKES (FE)

Alternating strokes are very similar to lateral strokes, especially regarding delegation of muscle groups. These permutations should exhibit a balanced relationship between wrist/torque and elbow/buoyancy. The primary difference is the number of notes included in each gesture. The choice of whether to use laterals or alternating strokes for a particular musical passage is usually determined by the tempo/hand speed.

GESTURES

To review, we define a gesture as the initiation of a unique, self-contained movement. These can often (but not always) be delineated by a single complete extension and retraction of the elbow. As stated above, lateral strokes create two equal notes within one unique gesture. Alternating strokes create one note per gesture. This means the elbow pumps for each note, rather than for each pair of notes.

Important note: another major difference between these two techniques is that we don't use elbow below a certain stick height threshold (usually 9", just like rebound strokes). The wrist can handle low height alternating strokes by itself, causing the use of elbow to become an inefficient addition of excess weight.

TEMPO THRESHOLD

This threshold can vary depending on style and musical context, but our general barrier between alternating lateral strokes is 16th notes at 95-110 bpm. This is given as a range because the hand speed within these bookend tempos can feel like an awkward middle ground. Alternating strokes feel a bit fast and laterals feel a bit slow. Decisions in this range are made based on the desired style and tone.

SINGLE INDEPENDENTS (FE)

Torque is once again central to the execution of a single independent stroke, but many elements are different from the approach to double verticals, laterals, and alternating strokes. Primary differences include the height of the hand in relationship to the mallet head, the increased independence of each mallet, and the location of the axis of rotation in the three-dimensional plane. We will go into further detail about these three differences, but first let's outline the general characteristics of our single-independent stroke technique:

- The hand should hold the interval of a fourth unless the musical context necessitates something different
- The tacet mallet should remain lower than the playing mallet until the point of contact
- A strong three-point grip is essential for effective inside-mallet playing: the thumb, the tip of the middle finger, and the side of the middle finger (the index finger stays in contact with the mallet, but only to help with control and interval changing)
- A similar three-point grip is used to stabilize the outside mallet: the backside of the middle finger, the lower/outside quadrant of the palm, and the back two fingers
 - o Notice that the back fingers are intentionally listed last – over-gripping with these fingers can lead to long-term injury, as the tendons and muscles are notably weak
 - o Players should rely much more on the back side of the index finger (where the callus is) to drive the outside mallet,

implying that the three-point grip is less balanced for the outside mallet than for the inside mallet

- The inside mallets are driven by wrist torque, but this is felt most potently in the three-point grip outlined above (especially the middle finger since it contains two of the three essential contact points)
- The outside mallets are driven by wrist torque, but this is felt most potently on the back side of the middle finger

HAND/MALLET HEIGHT RELATIONSHIP

We do not play with a ‘neutral wrist’ when using single-independent strokes. The axis of rotation is unique, eliminating the need for this approach. Instead, the height of the hand should be closer to the instrument. This creates a feeling of ‘pulling’ the mallet down through space, almost like pulling a rope/chain attached to a vertical pulley system.

INCREASED INDEPENDENCE

Some programs emphasize the important of complete independence between mallets – in this context meaning that the tacet mallet should not move when the playing mallet is executing a single-independent stroke. Although aesthetically pleasing, we do not teach this approach. We do, though, recognize that single-independent strokes should exhibit a higher level of independence between mallets than any other stroke type. This means that there should be no see-saw effect, rebound proxy, or buoyancy in the stroke. Instead the stroke path should be as linear as possible, using wrist turn/elbow pronation (and supplement elbow extension above a certain dynamic threshold) to create stick height. In other words, it’s ok if the tacet mallet exhibits minimal reactionary motion – as long as it stays close to the instrument and lower than the playing mallet at all times except the point of contact.

AXIS OF ROTATION

Effective single-independent technique requires precise identification and awareness of the center of the axis of rotation within the three-dimensional plane. Think of it this way:

Imagine a person holding a 6-foot rope. An object weighing about 5 pounds is tied securely to the end of the rope. This person extends their arms at chest level and begins to spin around without changing their position. The object then rotates in a circular path around the person.

In this image, the person is the center of rotation. What's essential here is that the center exists outside of a two-dimensional plane. Depending on the details of the system, there is a specific point that exists at the center of the rotation with three different coordinates – x, y, and z. In the context of body positioning/anatomy, these are typically referred to as the transverse, coronal, and sagittal planes. For simplicity, we will refer to them as horizontal, vertical, and sagittal.

A caveat: I am oversimplifying the system for ease of learning, but in this case the system is more complicated because the center itself is rotating.

Let's go back to the analogy. The x coordinate (aka the center on the horizontal plane) is simply the location of the person's feet. The y coordinate (aka the center on the vertical plane) is the height of the person's hand. In this example it was specified as chest level. The z coordinate (aka the center on the sagittal plane) is the most complicated. In this example we will simply refer to it as the 'center of gravity'. This is determined by how far the person's elbows are extended. This has significant implications, as retracting the elbows into the torso would shorten the radius of rotation and therefore reduce the linear velocity.

So why go into this level of detail? Because single-independents are very difficult (especially when fast), meaning that each player must be fully aware of the center of their axis of rotation. So where is it? Generally it should be towards the center of the hand, maybe a little lower or further back. I'm hesitant to prescribe a specific spot because we all have hands

of varying size and shape. For me personally, I rotate around the back finger for inside-mallet strokes, and around the tip of the middle finger for outside-mallet strokes. While we won't prescribe the exact 'coordinates', here's where your center should NOT be:

- At the perch (i.e. the intersection of the thumb and index finger)
- The mallet head of the tacet mallet
- Any point on the shaft of the tacet mallet that extends beyond the hand

Because there is significant centrifugal force in play, you should be able to feel this 'center of gravity' as you execute single-independent strokes. Spend some experimenting/thinking about where your center is and whether or not that matches where it should be. If you are unsure of exactly where it should be, try the method that I use. We can also take a look at your hands and talk about it 1-on-1.

INTERVAL CHANGES (FE)

Leigh Howard Stevens – and many other successful teachers and musicians – change intervals by rolling the inside mallet between the thumb and index finger. We do not change intervals that way. Instead we toss interval changes, moving the butt of the inside mallet to different positions across the palm of the hand.

TOSSING

Tossing is a strong word for what is actually done during this process. More accurately, we manipulate the position of the mallet while it is in free-fall or 'weightlessness'. During the action of rebounding or lifting the mallet, the grip relaxes, allowing the hand to accelerate slightly faster than the mallet. The mallet then enters a brief moment of free-fall, during which the middle finger and perch move the butt of the mallet into the new palm position.

This can be practice without an instrument. In your idle time, practice tossing intervals with the front three fingers. If you're doing it correctly, it should be fairly effortless. It takes some dexterity in the fingers – which can cause initial frustration – but start small. Tossing between thirds and fifths is a great place to begin.

PALM POSITIONS

Once again, it is difficult to assign specific coordinates to the hand because our hands are different. I will outline my personal seven palm positions, but use these as a starting point to figure out what works for your unique hand size and shape. The titles of the different positions represent the interval you are holding. Each description outlines the location of the butt of the mallet when playing the prescribed interval.

- Second: tucked into/hooked under the thumb muscle (*there are three muscles attached to thumb, but I refer here to the abductor pollicis brevis*)
- Third: almost in the center of the palm, but slightly towards the thumb muscle
- Fourth: directly in the center of the palm (*this is part of the reason why we hold fourths when playing single-independents*)
- Fifth: slightly above the center of the palm, in the lower horizontal crease (*more specifically, at the intersection of my proximal palmar and median creases*)
- Sixth: moving towards the top of the palm, in my distal palmar crease and just below the underside of my middle finger knuckle (or MCP joint)
- Seventh: directly in between the underside of my middle and ring finger knuckles (MCP joints), but hooked under the middle finger knuckle for stability
- Octave: sometimes referred to as the “locked octave”, in the crease between my middle finger and palm (but hooked on the ring finger side for leverage and stability)

Caveat: Marimba bars are graduated in width – this means that octaves as the bottom of the instrument are a different size than those at the top. Let

this fact provide further emphasis that these positions are somewhat subjective, and certainly not concrete. Compare it to trombone or fretless string instruments – they have general positions that they practice, but the player must remain malleable in their use of these positions in order to play in tune with other musicians.

EYE-HAND COORDINATION (FE)

This topic is, in my experience, the most under-taught and undervalued in the marching arts activity. I hope you have had a different experience, but I have heard very little about the topic during my time in the percussion community, especially considering how integral it is to pitch accuracy.

There's not much to say about it here, as you likely have a foundational understanding of the topic. Just know that we will work on it and talk about it a lot. Below are some general thoughts to consider when working on your hand-eye coordination:

- Looking at the general median area of the phrase and using your peripheral vision is a recipe for poor pitch accuracy
- Looking in the general direction of the written note isn't enough – you need to focus your vision on the pitch itself AND the desired beating zone
- The most difficult task is choosing which note to look at when playing in the spread – in this context you should apply the following:
 - o Be willing to turn your head both ways and focus your eyes on the outside mallets
 - o Take mental snapshots of the reverse side of the instrument before you turn your head to check the other side
 - o Your visual memory is better than you think – when looking away to focus on another area, trust your mental snapshot and muscle memory
- This kind of hand-eye coordination is different from the dominant discourse on the topic because you aren't in tactile connection with

- the target – your mallet is a mediating object, similar to a tennis racket or baseball bat – but the general premises transfer over well
- Your hand-eye coordination will almost certainly be less developed in your non-dominant hand – this is ok, just give it more reps than the dominant hand
- If you haven't worked intensively on hand-eye coordination, your eyes will struggle to focus at first – be patient with yourself and work on it every day

Consider using these basic daily exercises to improve your hand-eye coordination. The task itself is not important though – what is important is what you choose to do with your eyes while executing the tasks.

- Tossing a tennis ball against a wall and catching it, but keeping your eyes perpetually focused on the ball (BOTH hands, especially non-dominant)
- Bouncing a (soft) ball into the air and catching it, but tracking the ball with your eyes the whole way (even in the hand)
- Bouncing a tennis ball on a tennis racket, counting how many times you can bounce it before dropping
- Bouncing a wiffle ball on a wiffle bat, counting how many times you can bounce it before dropping
- Playing slow, one-handed scales while focusing your eyes on each note
- Doing mental reps of a chromatic scale up and down the whole marimba, focusing your eyes on each bar
- Playing scale in the spread (separated by 2 or more octaves), allowing your head and eyes to turn both ways while taking mental snapshots

Instructions for Specific Exercises

TIME & FLOW:

Battery

- Play with full rebound
- Keep the feet in time and focus on rhythmic **precision**
- Play with **power and flow**
- Quads: perfect the rhythms on a single playing surface
- Basses: from A-B, practice the split variation w/ 1s, 2s, 3s, and 4s
 - B-end has no unison or split variations – as written *only*

Front Ensemble

- Prioritize rhythmic **precision** by playing on a practice pad with a metronome
- Play with full lift/rebound
- Play with **power and flow**
- Pay close attention to the dynamics

THREE HEIGHTS:

Battery

- Control the downstroke to keep taps low, use rebound for consecutive notes of the same height
- Tap sound should be full
- Use correct double stroke technique at low heights
- Read carefully over our heights system (*listed above*)

Front Ensemble

- For mallets this exercise is all about inside 2's
 - Anchor your grip in the middle finger
 - Hold no larger than a 4th when playing inside 2's
 - Keep the hands low
 - Use torque to create stick height
- Rhythm section should focus carefully on rhythmic **precision**
- Synths: start thinking ahead about your choice of sound

ROLLING INTERVALS:

Battery

- Play at a variety of tempos and heights (6" is default, but we play it all the way from 3" to 12")
- Maintain a high level of rhythm **precision** and diddle quality
- Double and triple check your execution of the metric modulations
- Challenge yourself with higher tempos to work on chops

Mallets

- This exercise is all about changing intervals – use the fulcrum/middle finger to manipulate the inside mallet as you toss between small and large intervals
- It's imperative that you change intervals as soon as possible after playing the previous note, but maintain **fluidity**. This is not a piston stroke exercise
- Rhythm section: rhythmic **precision** is difficult in this exercise and should be top priority

75764:

Battery

- Play the written dynamics – taps at 3" and accents at 12"
- Experiment with all of the suggested inserts, focusing on quality of flams, use of modified Moeller, and precision of rhythm
- Explore some inserts note listed on the page
- We will not mark time to this exercise

Front Ensemble

- Stay relaxed – the musical content is not easy, but the musical style calls for an effortless fluidity and gentle touch
- Marimbas, the crossover is not that difficult – don't overthink it
- Make sure you are using correct lateral technique outlines in the technique prose

BASICS:

- Focus on the ground-level fundamentals
- Apply the details outline in the technique prose
- Play in a mirror whenever possible to ensure you are following our technique guidelines
- Record yourself so you can hear any imperfections from an objective perspective
- Challenge yourself to rehearse any potential variations specified on the page

You may be expected to demonstrate:

Bass

- Memorization of the audition music and marking time while playing
- Rudiments – you will be asked to play them in the context of the exercises or separately. Be sure to work on the rudiments defined in exercise instructions.
- Sight-reading
- Marching fundamentals
- Learn the part of the drum you'd like to audition for. Drum #1 (smallest) is at the top of the staff, #2 is the note below that, etc. Large noteheads on the middle line are unisons.

Cymbals

- Memorization of the audition music and marking time while playing
- Sounds/plating techniques
- Sight-reading
- Marching fundamentals (including our Pregame jog)

Snare

- Memorization of the audition music and marking time while playing
- Rudiments – you will be asked to play them in the context of the exercises or separately. Be sure to work on the rudiments defined in exercise instructions.
- Sight-reading
- Marching fundamentals

Quads

- Memorization of the audition music and marking time while playing
- Rudiments – you will be asked to play them in the context of the exercises or separately. Be sure to work on the rudiments defined in the exercise instructions.
- We may come up with some arounds on the spot – be ready to learn quickly!
- Sight-reading
- Marching fundamentals

Mallets

- Memorization of the audition music
- All twelve major and minor scales
- Sight-reading
- Proficiency in 4-mallet (Stevens grip) and 2-mallet playing
- Knowledge of the four basic 4-mallet stroke types: double-vertical, single-independent, single-alternating, and double lateral

Synth 1

- Memorization of the audition music
- All twelve major and minor scales
- Proficiency in piano fundamentals
- Sight-reading

Synth 2/Percussion

- Memorization of the audition music
- All twelve major and minor scales
- General proficiency in auxiliary percussion and snare drum
- Sight-reading

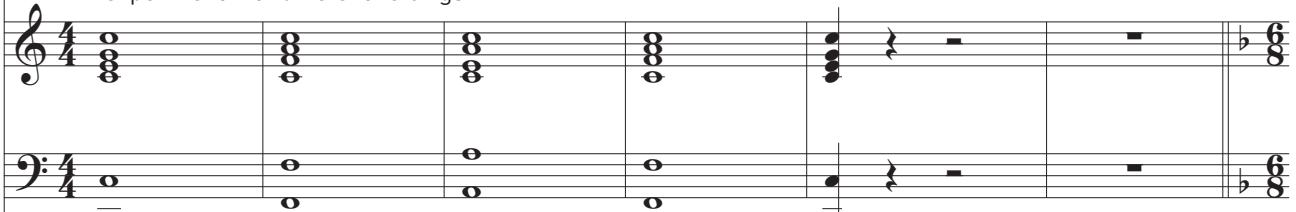
Drum Set

- Memorization of the audition music
- Various drum set styles (rock, funk, jazz, bossa nova, soca, etc.)
- Sight-reading

Questions? Post it in the MS Teams audition group to benefit everyone.

For more individualized inquiries email Dr. Locklear at

acloo17@auburn.edu

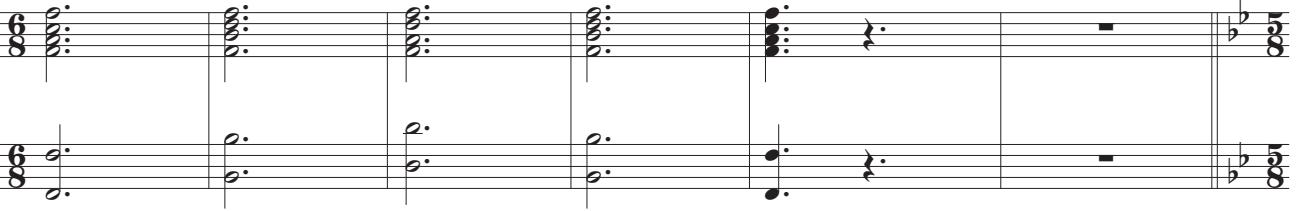

Rhythm Section

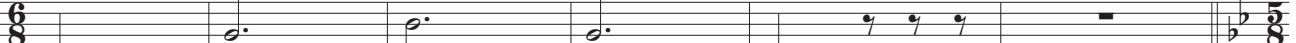
AUDL Basics - Rebounds

$\text{♩} = 140-200$
rock or funk

long fill

rum Set

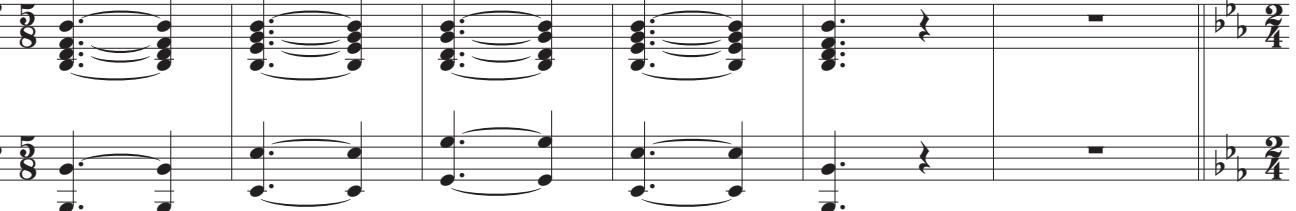

1/Piano
1-4-6-4
experiment with different voicings

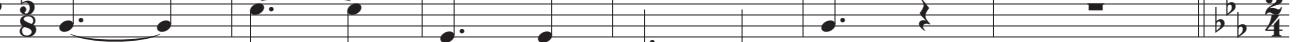

ass Guitar
1-4-6-4
match kick drum rhythm/style

$\text{♩} = \text{♩}$
shuffle beat

long fill

DS


7
7

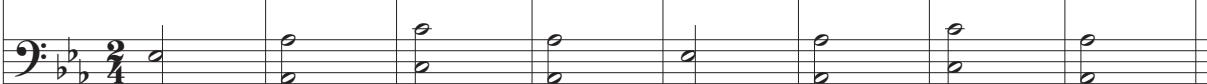

3G

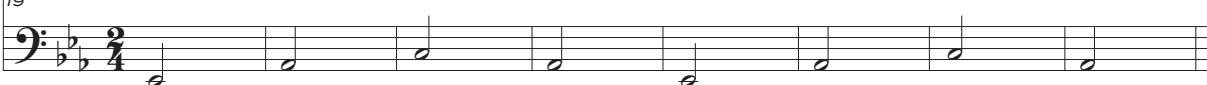
felt in 1
13 5/4 half-time groove

short fill

DS

7
13


3G


2 AUDL Basics - Rebounds

19 rock or funk long fill

DS

19

19

3G

Each line should modulate to a new major key using one of the following sequences:

- circle of fourths
- chromatic scale
- diatonic scale
- circle of fifths

Play with varying rhythmic density depending on tempo

Use as template for double verticals, alternating perms, laterals, etc.

AUDL Basics - Rebounds

long fill

Play in various chord progressions, such as the following:

- 1 - 4 - 6 - 4 - 1
- 1 - 5 - 6 - 4 - 1 ('pop music' progression)
- 1-1/3 - 4 - 5 - 1
- 1 - 4 - 1/5 - 5 - 4 (plagal cadence)
- 4/5 - 5 - 4/5 - 5 - 4 (pedal plagal, *all voices ascending*)
- 1 - 4 - 2 - 5 - 1 (standard 2-5-1)
- 1 - 6⁻⁷ - 2⁻⁷ - 5⁻⁷ - 1^{maj7} (jazz standards progression)
- 1 - 2⁻⁷ - 5⁻⁷ - 1^{beb} - 4^{maj9} (2-5-1 modulation)
- b3/4 - 4 - b6/4 - b7/4 - 1 (modal pedal)
- 1 - 4^{maj7} - 7^{-7b5} - 3⁷ - 6 (half-diminished deceptive cadence)
- 1 - 5 - 6 - 3 - 4 - 1 - 4 - 5 - 1 (Pachelbel progression)
- and more!

AUDL Basics - Scale Variations

 $\text{♩} = 140-172$

FE Option 1

FE Option 2

FE Option 3

FE Option 4

FE Option 5

FE Option 6

FE Option 7

FE 1

FE 2

FE 3

FE 4

FE 5

FE 6

FE 7

11

FE_1

FE_2

FE_3

FE_4

FE_5

FE_6

FE_7

11

FE_1

FE_2

FE_3

FE_4

FE_5

FE_6

FE_7

22

27

FE 1

FE 2

FE 3

FE 4

FE 5

FE 6

FE 7

FE 1

FE 2

FE 3

FE 4

FE 5

FE 6

FE 7

FE 1

FE 2

FE 3

FE 4

FE 5

FE 6

FE 7

Rhythm Section

AUDL Basics - Double Triple

$\text{♩.} = 140-172$
afro-cuban backbeat

Drum Set

Piano

Synth 2/
Perc

5

short fill

DS

S2

9

DS

S2

13

DS

13

10.

13

S2

13

long fill

13

DS

13

10.

13

S2

13

long fill

17

short fill

DS

17

10.

17

S2

17

17

short fill

DS

17

10.

17

S2

17

Rhythm Section

AU Gallup Rolls

$\text{♩} = 100-132$
mambo

Drum Set

Piano

ass Guitar

D. S. 3

no. 3

bass 3

D. S. 5

no. 5

bass 5

montuno

sim. articulation

mambo/montuno

short fill

This musical score is for a 'Rhythm Section' titled 'AU Gallup Rolls'. The score is in 4/4 time and includes parts for Drum Set, Piano, and Bass. The tempo is marked as 100-132 BPM. The Drum Set part features a 'montuno' section and a 'sim. articulation' section. The Piano part includes a 'mambo/montuno' section. The Bass part includes a 'short fill' section. The score is divided into measures 1-3 and 5.

AU Triplet Rolls

♩. = 140-180

New Orleans second line

tastefully comp on this rhythmic framework

no.

bass

Musical score for orchestra, soprano, and basso continuo, page 11, measures 11-12. The score includes parts for Soprano (S.), no. (numbered parts), and Basso continuo (bass). The Soprano part has a melodic line with eighth and sixteenth notes. The numbered parts provide harmonic support with sustained notes and chords. The Basso continuo part provides harmonic support with sustained notes and bass lines. Measure 11 ends with a repeat sign and a double bar line. Measure 12 begins with a forte dynamic and continues the melodic line and harmonic support. The score is in common time and includes various dynamics and performance instructions.

Musical score for orchestra and basso continuo, page 15, measures 15-16. The score includes parts for Oboe (Oboe S.), Violin (no. 1), Violin (no. 2), Viola, Cello, Double Bass (bass), and Basso Continuo (bass). The Oboe S. part has sixteenth-note patterns with grace marks. The Violin no. 1 part features sustained notes with grace marks. The Violin no. 2 part has sixteenth-note patterns. The Viola and Cello parts provide harmonic support with sustained notes. The Double Bass part has sustained notes. The Basso Continuo part is shown with a bass clef and a bass staff, providing harmonic support. Measure 15 ends with a repeat sign and a double bar line. Measure 16 begins with a bass note and continues with sixteenth-note patterns for the Oboe S. and Violin no. 1 parts, and sustained notes for the other parts.

Duple Grid

Three staves of 16th-note patterns. The first staff is in 4/4 time. The second staff begins at measure 5. The third staff begins at measure 9. Each staff features a continuous sequence of 16th-note patterns, with each note marked by a 'greater than' symbol (>) above it. The patterns consist of eighth-note pairs followed by sixteenth-note pairs.

Triplet Grid

Three staves of 16th-note patterns. The first staff is in 12/8 time, starting at measure 14. The second staff begins at measure 17. The third staff begins at measure 23. Each staff features a continuous sequence of 16th-note patterns, with each note marked by a 'greater than' symbol (>) above it. The patterns consist of eighth-note triplets followed by sixteenth-note triplets.

Rhythm Section

Time

A $\text{♩} = 128-142$

Locklear

Drum Set

Synth 1

ynth 2/Perc

5

S

31

S2

8

FILL

to next key in circle of 4ths

S

31

S2

Rhythm Section

Time & Flow

Locklear

A

$\text{♩} = 128-142$

Drum Set

Locklear

5

FILL

DS

51

S2

B

DS

51

S2

11

11

31

11

5

C

zither + piano layered

5 5 5 5 5 5 5 5

15

19

31

19

31

19

Rhythm Section

Three Heights

Inspired by NC A&T's Double Dribble

Drum Set Locklear
 2 A
mf
 PWM synth lead: mono w/ short portamento
 slight dotted eighth delay
 mod wheel controlling vibrato

Synth 1
 2
mf
 slap bass layered w/ dirty synth bass

ynth 2/Perc
 2
mf

S
 6
 6
 6

i1
 10
 10
 10

i2
 10

B

mp 5 *f* *mp*

2 14

S

14

14

dashed cresc. = mod wheel

14

split layers:
down stems = synth bass
up stems = slap bass

18

3

18

3

18

3

22

3

rhythms are approximate, should feel like an accel.

strict tempo

22

3 3 3

22

3

Rhythm Section

Rolling Intervals

A

$\text{♩} = 132-168$

pizzicato strings

th 2/Perc

th 2/Perc

crisp caxixi/shaker

Rosanna shuffle
all unaccented snare notes are ghosted

Drum Set

B

S2

+ pizzicato upright bass

i.S.

15

layer gritty synth bass & arco double bass

piano LH

+ low tom

swishknocker

arco strings RH

locklear

C

2

Rolling Intervals

20 + splash cymbal on snare drum

20 crash of doom

S2

I.S.

D

23

S2

I.S.

26

S2

I.S.

Auxiliary Percussion

MADIBA

Martin / Boyd

1 $\text{♩.} = 67$ $\text{♩.} = 135$

10 Bongos *ppp* *mf*

13

16 **To Electric Bass**

22

26

30

35

39

42 *f*

2

50

54

58

61

